Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T19:14:35.520Z Has data issue: false hasContentIssue false

Palaeoenvironmental reconstruction and early Permian ichnoassemblage from the NE Iberian Peninsula (Pyrenean Basin)

Published online by Cambridge University Press:  14 October 2015

EUDALD MUJAL*
Affiliation:
Departament de Geologia, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
JOSEP FORTUNY
Affiliation:
Institut Català de Paleontologia Miquel Crusafont, C/ Escola Industrial 23, E-08201 Sabadell, Spain
ORIOL OMS
Affiliation:
Departament de Geologia, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
ARNAU BOLET
Affiliation:
Institut Català de Paleontologia Miquel Crusafont, C/ Escola Industrial 23, E-08201 Sabadell, Spain
ÀNGEL GALOBART
Affiliation:
Institut Català de Paleontologia Miquel Crusafont, C/ Escola Industrial 23, E-08201 Sabadell, Spain
PERE ANADÓN
Affiliation:
Institut de Ciències de la Terra Jaume Almera CSIC, Lluís Solé i Sabarís s.n., E-08028 Barcelona, Spain
*
Author for correspondence: [email protected]

Abstract

Recent finds of tetrapod ichnites in the red-bed and volcaniclastic succession of the Iberian Pyrenean Basin permits an assessment of the faunal diversity and palaeoenvironment of a late early Permian setting. The tetrapod ichnoassemblage is inferred with the aid of photogrammetry and constituted by Batrachichnus salamandroides, Limnopus isp., cf. Amphisauropus (these three ichnotaxa present associated swimming traces, assigned to Characichnos), cf. Ichniotherium, Dromopus isp., cf. Varanopus, Hyloidichnus isp. and Dimetropus leisnerianus. These ichnotaxa suggest the presence of temnospondyls, seymouriamorphs, diadectomorphs, araeoscelids, captorhinids and synapsid pelycosaurs as potential trackmakers. These faunas correlate to the late early Permian. Two ichnoassociations correspond to two different palaeoenvironments that were permanently or occasionally aquatic (meandering fluvial systems and unconfined runoff surfaces, respectively). Ichnotaxa in the fluvial system is more diverse and abundant than in the runoff surfaces system. The Iberian Pyrenean ichnoassemblage reveals the faunistic connection and similarities among nearing basins (Spain, southern France and Morocco) differing from the Central European basins (i.e. German Tambach Formation). Based on the palaeogeography and the climate models of the early Permian, we suggest the correlation of ichnofaunal composition with different palaeoclimate biomes. This results in a diffuse boundary of Gondwana–Laurasia land masses, indicating no geographic barriers but a possible climate control on the faunal distribution. Further studies, integrating data from distant tracksites, should refine these biome boundaries.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Ramis, C. & Doubinger, J. 1987. Microflora de Estac (Lérida). Cuadernos de Geología Ibérica 11, 131–7.Google Scholar
Avanzini, M., Bernardi, M. & Nicosia, U. 2011. The Permo-Triassic tetrapod faunal diversity in the Italian Southern Alps. In Earth and Environmental Sciences (ed. Dar, I.A.), pp. 591608. InTech.Google Scholar
Avanzini, M., Contardi, P., Ronchi, A. & Santi, G. 2011. Ichnosystematics of the Lower Permian invertebrate traces from the Collio and Mt. Luco Basins (North Italy). Ichnos 18 (2), 95113.CrossRefGoogle Scholar
Avanzini, M., Neri, C., Nicosia, U. & Conti, A. 2008. A new Early Permian ichnocoenosis from the ‘Gruppo vulcanico atesino’ (Mt. Luco, Southern Alps, Italy). Studi Trentini di Scienze Naturali, Acta Geologica 83, 231–6.Google Scholar
Baird, D. 1952. Revision of the Pennsylvanian and Permian Footprints Limnopus, Allopus and Baropus . Journal of Paleontology 26 (5), 832–40.Google Scholar
Belvedere, M., Jalil, N.-E., Breda, A., Gattolin, G., Bourget, H., Khaldoune, F. & Dyke, G. J. 2013. Vertebrate footprints from the Kem Kem beds (Morocco): A novel ichnological approach to faunal reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 383–384, 52–8.CrossRefGoogle Scholar
Benton, M. J. & Newell, A. J. 2014. Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Research 25, 1308–37.CrossRefGoogle Scholar
Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, D. R., Genise, J., Mikuláš, R., Nielsen, J. K., Nielsen, K. S. S., Rindsberg, A. K., Schlirf, M. & Uchman, A. 2006. Names for trace fossils: a uniform approach. Lethaia 39, 265–86.CrossRefGoogle Scholar
Branney, M. J. & Kokelaar, P. (eds) 2002. Pyroclastic Density Currents and the Sedimentation of Ignimbrites. Geological Society of London, Memoir no. 27, 192 pp.Google Scholar
Brink, K., Hawthorn, J. R. & Evans, D. C. 2012. New occurrences of Ichniotherium and Striatichnium from the Lower Permian Kildare Capes formation, Prince Edward Island, Canada: Palaeoenvironmental and biostratigraphic implications. Palaeontology 55 (5), 1075–90.Google Scholar
Buatois, L. A., Mangamo, M. G., Maples, C. G. & Lanier, W. P. 1998. Ichnology of an Upper Carboniferous Fluvio-Estuarine Palaeovalley: The Tonganoxie Sandstone, Buildex Quarry, Eastern Kansas, USA. Journal of Paleontology 72 (1), 152–80.CrossRefGoogle Scholar
Castanera, D., Vila, B., Razzolini, N. L., Falkingham, P. L., Canudo, J. I., Manning, P. L. & Galobart, À. 2013. Manus track preservation bias as a key factor for assessing trackmaker identity and quadrupedalism in basal ornithopods. PlosOne 8 (1), e54177.CrossRefGoogle ScholarPubMed
Chumakov, N. M. & Zharkov, M. A. 2002. Climate during Permian-Triassic biosphere reorganizations. Article 1: Climate of the Early Permian. Stratigraphy and Geological Correlation 10, 586602.Google Scholar
Demathieu, G., Gand, G. & Toutin-Morin, N. 1992. La palichnofaune des bassins permiens provençaux. Géobios 25 (1), 1954.CrossRefGoogle Scholar
Demathieu, G., Torcida Fernández-Baldor, F., Demathieu, P., Urién Montero, V. & Pérez-Lorente, F. 2008. Icnitas de grandes vertebrados terrestres en el Pérmico de Peña Sagra (Cantabria, España). In Libro de Resúmenes (eds Ruiz-Omeñaca, J.I., Piñuela, L. & García-Ramos, J.C.), pp. 27–8. XXIV Jornadas de la Sociedad Española de Palaeontología, Museo del Jurásico de Asturias (MUJA), Colunga.Google Scholar
Falcon-Lang, H. J., Gibling, M. R., Benton, M. J., Miller, R. F. & Bashforth, A. R. 2010. Diverse tetrapod trackways in the Lower Pennsylvanian Tynemouth Creek Formation, near St. Martins, southern New Brunswick, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 296, 113.CrossRefGoogle Scholar
Falkingham, P. L. 2012. Acquisition of high resolution three-dimensional models using free, open-source, photogrammetric software. Palaeontologia Electronica 15 (1), 1T:15p.Google Scholar
Falkingham, P. L. 2014. Interpreting ecology and behavior from the vertebrate fossil track record. Journal of Zoology 292 (4), 222–8.CrossRefGoogle Scholar
Fortuny, J., Bolet, A., Sellés, A. G., Cartanyà, J. & Galobart, À. 2011. New insights on the Permian and Triassic vertebrates from the Iberian Peninsula with emphasis on the Pyrenean and Catalonian basins. Journal of Iberian Geology 37 (1), 6586.Google Scholar
Fortuny, J., Sellés, A. G., Valdiserri, D. & Bolet, A. 2010. New tetrapod footprints from the Permian of the Pyrenees (Catalonia, Spain): preliminary results. Cidaris 30, 121–4.Google Scholar
Galé, C. 2005. Evolución geoquímica, petrogenética y de condiciones geodinámicas de los magmatismos pérmicos en los sectores central y occidental del Pirineo. PhD thesis, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain. Published thesis.Google Scholar
Gand, G. 1988. Les traces de vertébrés tétrapodes du Permien Francais. Ph.D. thesis, Centre des Sciences de la Terre, Université de Bourgogne, Dijon, France. Published thesis.Google Scholar
Gand, G. 1989. Essai de reconstitution paléoenvironnementale et paléoécologique d'une partie du nord du bassin de Lodève (Hérault) au Permien inférieur. Géologie de la France 4, 1730.Google Scholar
Gand, G. 1993. La palichnofaune de vertébrés tétrapodes du bassin permien de Saint-Affrique (Aveyron): comparaisons et conséquences stratigraphiques. Géologie de la France 1, 4156.Google Scholar
Gand, G. & Durand, M. 2006. Tetrapod footprint ichno-associations from French Permian basins. Comparisons with other Euramerican ichnofaunas. In Non-Marine Permian Biostratigraphy and Biochronology (eds Lucas, S. G., Cassinis, G. & Schneider, J. W.), pp. 157–77. Geological Society of London, Special Publication no. 265.Google Scholar
Gand, G., Garric, J., Demathieu, G. & Ellenberger, P. 2000. La palichnofaune de vertébrés tétrapodes du Permien supérieur du bassin de Lodève (Languedoc-France). Palaeovertebrata 29 (1), 182.Google Scholar
Gand, G., Kerp, H., Parsons, C. & Martínez-García, E. 1997. Palaeoenvironmental and stratigraphic aspects of the animal traces and plant remains in Spanish Permian red beds (Peña Sagra, Cantabrian Mountains, Spain). Géobios 30 (2), 295318.Google Scholar
Gand, G., Tüysüz, O., Steyer, S., Allain, R., Sakınç, M., Sanchez, S., Șengor, A. M. C. & Sen, S. 2011. New Permian tetrapod footprints and macroflora from Turkey (Çakraz Formation, northwestern Anatolia): Biostratigraphic and palaeoenvironmental implications. Comptes Rendus Paleovol 10, 617–25.Google Scholar
Gascón, F. & Gisbert, J. 1987. La evolución climática del Stephaniense, Pérmico y Buntsandstein del Pirineo catalán en base al estudio de paleosuelos. Cuadernos de Geología Ibérica 11, 97114.Google Scholar
Gibbs, M. T., Rees, P. M., Kutzbach, J. E., Ziegler, A. M., Behling, P. J. & Rowley, D. B. 2002. Simulations of Permian climate and comparisons with climate sensitive sediments. Journal of Geology 110, 3355.Google Scholar
Geinitz, H. B. 1861. Dyas oder die Zechsteinformation und des Rotliegunde. Die Animalischen ueberreste der Dyas, vol. I. Leipzig: William Engelmann, 123 pp.Google Scholar
Geinitz, H. B. 1863. Beiträge zur Kenntnis der organischen überreste in der Dyas. Neues Jahrbuch für Minerologie und Geologie un Paläntologie 1863, 385–98.Google Scholar
Gilmore, C. W. 1927. Fossil footprints from the Grand Canyon. II. Smithsonian Miscellaneous Collections 80 (3), 178.Google Scholar
Gisbert, J. 1986. Els temps tardihercinians. In Història Natural dels Països Catalans, Geologia vol. I (ed. Folch, R.), pp. 197242. Fundació Enciclopedia Catalana.Google Scholar
Hasiotis, S. T., Platt, B. F., Hembree, D. I. & Everhart, M. J. 2007. The trace-fossil record of vertebrates. In Trace Fossils: Concepts, Problems, Prospects (ed. Miller, W. III), pp. 196218. Elsevier.Google Scholar
Haubold, H. 1970. Versuch der Revision der Amphibien-Fährten des Karbon und Perm. Freiberger Forschungshefte C 260, 83117.Google Scholar
Haubold, H. 1971. Encyclopedia of Palaeoherpetology, Part 18: Ichnia amphibiorum et Reptiliorum fossilium. Stuttgart, Portland: Gustav Fischer Verlag, 124 pp.Google Scholar
Haubold, H. 1984. Saurierfährten. Ziemsen-Verlag, Wittenberg, 231 pp.Google Scholar
Haubold, H. 1985. Stratigraphische Grundlagen des Stefan C und Rotliegenden im Thüringer Wald. Berlin: Schriftenreihe für Geologische Wissenschaften, 110 pp.Google Scholar
Haubold, H. 1996. Ichnotaxonomie und klassifikation von tetrapodenfährten aus dem Perm. Hallesches Jahrbuch für Geowissenschaften B 18, 2388.Google Scholar
Haubold, H. 2000. Tetrapodenfährten aus dem Perm: Kenntnisstand und progress 2000. Hallesches Jahrbuch für Geowissenschaften B 22, 116.Google Scholar
Haubold, H., Hunt, A. P., Lucas, S. G. & Lockley, M. G. 1995. Wolfcampian (Early Permian) vertebrate tracks from Arizona and New Mexico. New Mexico Museum of Natural History and Science Bulletin 6, 135–65.Google Scholar
Haubold, H. & Lucas, S. G. 2001. Die tetrapodenfährten der Choza Formation (Texas) und das artinsk-alter der redbed-ichnofaunen des Unteren Perm. Hallesches Jahrbuch für Geowissenschaften B 23, 79108.Google Scholar
Haubold, H. & Lucas, S. G. 2003. Tetrapod footprints of the Lower Permian Choza Formation. Paläontologische Zeitschrift 77, 247–61.Google Scholar
Hminna, A., Voigt, S., Saber, H., Schneider, J. W. & Hmich, D. 2012. On a moderately diverse continental ichnofauna from the Permian Ikakern Formation (Argana Basin, Western High Atlas, Morocco). Journal of African Earth Sciences 68, 1523.Google Scholar
Hunt, A. P. & Lucas, S. G. 2006. Permian tetrapod ichnofacies. In Non-Marine Permian Biostratigraphy and Biochronology (eds Lucas, S. G., Cassinis, G. & Schneider, J. W.), pp. 137–56. Geological Society of London, Special Publication no. 265.Google Scholar
Hunt, A. P. & Lucas, S. G. 2007. Tetrapod Ichnofacies: A new paradigm. Ichnos 14, 5968.CrossRefGoogle Scholar
Leonardi, G. 1987. Glossary and Manual of Tetrapod Footprint Palaeoichnology. Departamento Nacional de Produção Mineral, Brasilia, 117 pp.Google Scholar
Lovelace, D. M. & Lovelace, S. D. 2012. Paleoenvironments and paleoecology of a Lower Triassic invertebrate and vertebrate ichnoassemblage from the Red Peak Formation (Chugwater Group), Central Wyoming. Palaios 27, 636–57.CrossRefGoogle Scholar
Lucas, S. G. 2006. Global Permian tetrapod biostratigraphy and biochronology. In Non-Marine Permian Biostratigraphy and Biochronology (eds Lucas, S. G., Cassinis, G. & Schneider, J. W.), pp. 6593. Geological Society of London, Special Publication no. 265.Google Scholar
Lucas, S. G. & Dalman, S. G. 2013. Alfred King's Pennsylvanian tetrapod footprints from western Pennsylvania. New Mexico Museum of Natural History and Science Bulletin 60, 233–9.Google Scholar
Lucas, S. G., Krainer, K., Chaney, D. S., DiMichele, W. A., Voigt, S., Berman, D. S. & Henrici, A. C. 2013. The Lower Permian Abo Formation in Central New Mexico. New Mexico Museum of Natural History and Science Bulletin 59, 161–80.Google Scholar
Lucas, S. G., Lerner, A. J. & Haubold, H. 2001. First record of Amphisauropus and Varanopus in the Lower Permian Abo Formation, central New Mexico. Hallesches Jahrbuch für Geowissenschaften B 23, 6978.Google Scholar
Lucas, S. G., Minter, N. J., Spielmann, J. A., Hunt, A. P. & Braddy, S. J. 2005. Early Permian ichnofossil assemblage from the Fra Cristobal Mountains, Southern New Mexico. New Mexico Museum of Natural History and Science Bulletin 31, 140–50.Google Scholar
Lucas, S. G., Spielmann, J. A. & Lerner, A. J. 2009. The Abo Pass tracksite: a Lower Permian tetrapod footprint assemblage from central New Mexico. In 60th Field Conference, Geology of the Chupadera Mesa Region (eds Lueth, V. W., Lucas, S. G. & Chamberlain, R. W.), pp. 285–90. New Mexico Geological Society, Guidebook no. 60.Google Scholar
Lucas, S. G., Voigt, S., Lerner, A. J. & Nelson, W. J. 2011. Late Early Permian continental ichnofauna from Lake Kemp, north-central Texas, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 395404.Google Scholar
Marchetti, L., Avanzini, M. & Conti, M. A. 2013. Hyloidichnus bifurcatus Filmore, 1927 and Limnopus heterodactylus (King, 1845) from the Early Permian of Southern Alps (N Italy): A new equilibrium in the ichnofauna. Ichnos 20 (4), 202–17.CrossRefGoogle Scholar
Marchetti, L., Bernardi, M. & Avanzini, M. 2013. Some insights on well-preserved Amphisauropus and Erpetopus trackways from the Eastern Collio Basin (Trentino-Alto Adige, NE Italy). Bollettino della Società Paleontologica Italiana 52 (1), 5562.Google Scholar
Marchetti, L., Ronchi, A., Santi, G., Schirolli, P. & Conti, M. A. 2015 a. Revision of a classic site for the Permian tetrapod ichnology (Collio Formation, Rompia and Caffaro valleys, N. Italy), new evidences for the radiation of captorhinomorph footprints. Palaeogeography, Palaeoclimatology, Palaeoecology, published online April 2015. doi: 10.1016/j.palaeo.2015.04.005.CrossRefGoogle Scholar
Marchetti, L., Ronchi, A., Santi, G. & Voigt, S. 2015 b. The Gerola Valley site (Orobic Basin, Northern Italy): A key for understanding late Early Permian tetrapod ichnofaunas. Palaeogeography, Palaeoclimatology, Palaeoecology, published online April 2015. doi: 10.1016/j.palaeo.2015.02.032.Google Scholar
Marchetti, L., Santi, G. & Avanzini, M. 2014. The problem of small footprints in paleoichnology: Remarks on the Early Permian ichnotaxon Erpetopus cassinisi, a local species from Southern Alps (Northern Italy). Rivista Italiana di Paleontologia e Stratigrafia 120 (2), 129–43.Google Scholar
Marsh, O. C. 1894. Footprints of vertebrates in the Coal Measures of Kansas. American Journal of Sciences 48, 81–4.Google Scholar
Martí, J. 1983. La formación volcánica estefaniense Erill Castell (Pirineo de Lérida). Acta Geológica Hispánica 18 (1), 2733.Google Scholar
Martí, J. 1996. Genesis of crystal-rich volcaniclastic facies in the Permian red beds of the Central Pyrenees (NE Spain). Sedimentary Geology 106, 119.Google Scholar
Matthews, N. A. 2008. Aerial and Close-Range Photogrammetric Technology: Providing Resource Documentation, Interpretation, and Preservation. Technical Note 428. US Department of the Interior, Bureau of Land Management, National Operations Center, Denver, Colorado, 42 pp.Google Scholar
Melchor, R. N. & Sarjeant, W. A. S. 2004. Small amphibian and reptile footprints from the Permian Carapacha Basin, Argentina. Ichnos 11, 5778.Google Scholar
Mey, P. H. W., Nagtegaal, P. J. C., Roberti, K. J. & Hartevelt, J. J. A. 1968. Lithostratigraphic subdivision of post-Hercynian deposits in the south-central Pyrenees, Spain. Leidse Geologische Mededelingen 44, 221–8.Google Scholar
Michel, L. A., Tabor, N. J., Montañez, I. P., Schmitz, M. & Davydov, V. I. 2015. Chronostratigraphy and paleoclimatology of the Lodève Basin, France: Evidence for a pan-tropical aridification event across the Carboniferous-Permian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, published online April 2015. doi: 10.1016/j.palaeo.2015.03.020.Google Scholar
Minter, N. J. & Braddy, S. J. 2009. Ichnology of an Early Permian intertidal flat: The Robledo Mountains Formation of southern New Mexico, USA. Special Papers in Palaeontology 82, 5107.Google Scholar
Moodie, R. L. 1929. Vertebrate footprints from the red beds of Texas. Journal of Geology 38, 548–65.Google Scholar
Nagtegaal, P. J. C. 1969. Sedimentology, paleoclimatology, and diagenesis of post- Hercynian continental deposits in the south-central Pyrenees, Spain. Leidse Geologische Mededelingen 42, 143238.Google Scholar
Nicosia, U., Ronchi, A. & Santi, G. 2000. Permian tetrapod footprints from W Orobic Basin (Northern Italy). Biochronological and evolutionary remarks. Géobios 33 (6), 753–68.Google Scholar
Pereira, M. F., Castro, A., Chichorro, M., Fernández, C., Díaz-Alvarado, J., Martí, J. & Rodríguez, C. 2014. Chronological link between deep-seated processes in magma chambers and eruptions: Permo-Carboniferous magmatism in the core of Pangaea (Southern Pyrenees). Gondwana Research 25, 290308.Google Scholar
Petti, F. M., Avanzini, M., Belvedere, M., De Gasperi, M., Ferretti, P., Girardi, S., Remondino, F. & Tomasoni, R. 2008. Digital 3D modelling of dinosaur footprints by photogrammetry and laser scanning techniques: integrated approach at the Coste dell’Anglone tracksite (Lower Jurassic, Southern Alps, Northern Italy). Studi Trentini di Scienze Naturali, Acta Geologica 83, 303–15.Google Scholar
Petti, F. M., Bernardi, M., Ashley-Ross, M. A., Berra, F., Tessarollo, A. & Avanzini, M. 2014. Transition between terrestrial-submerged walkind and swimming revealed by Early Permian amphibian trackways and a new proposal for the nomenclature of compound trace fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 410, 278–89.Google Scholar
Pohlig, H. 1892. Altpermische Saurierfährten, Fische und Medusen der Gegend von Friedrichroda i Thüringen. In Festschrift zum 70 Geburtstag von Rudolf Leuckardt (ed. Anonymous), pp. 5964. Leipzig: William Engelmann.Google Scholar
Pretus, J. L. & Obrador, A. 1987. Presencia de restos óseos en el Pérmico de Menorca (nota previa). Bolletí de la Societat d'Història Natural de les Balears 31, 149–52.Google Scholar
Ptaszyński, T. & Niedźwiedzki, G. 2004. Late Permian vertebrate tracks from the Tumlin Sandstone, Holy Cross Mountains, Poland. Acta Palaeontologica Polonica 49 (2), 289320.Google Scholar
Rees, P. M., Ziegler, A. M., Gibbs, M. T., Kutzbach, J. E., Behling, P. J. & Rowley, D. B. 2002. Permian phytogeographic patterns and climate data/model comparisons. Journal of Geology 110, 131.Google Scholar
Robles, S. & Llompart, C. 1987. Análisis paleogeográfico y consideraciones paleoicnológicas del Pérmico Superior y del Triásico Inferior en la transversal del rio Segre (Alt Urgell, Pirineo de Lérida). Cuadernos de Geología Ibérica 11, 115–30.Google Scholar
Romer, A. S. & Price, L. W. 1940. Review of the Pelycosauria. Geological Society of America, Boulder, Special Papers no. 28, 534 pp.Google Scholar
Roscher, M. & Schneider, J. W. 2006. Permo-Carboniferous climate: Early Pennsylvanian to Late Permian climate development o central Europe in a regional and global context. In Non-Marine Permian Biostratigraphy and Biochronology (eds Lucas, S. G., Cassinis, G. & Schneider, J. W.), pp. 95136. Geological Society of London, Special Publication no. 265.Google Scholar
Schneider, J. W., Körner, F., Roscher, M. & Kroner, U. 2006. Permian climate development in the northern peri-Tethys area: the Lodève Basin, French Massif Central, compared in a European and global context. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 161–83.Google Scholar
Sidor, C. A., O’Keefe, F. R., Damiani, R., Steyer, J. S., Smith, R. M. H., Larsson, H. C. E., Sereno, P. C., Ide, O. & Maga, A. 2005. Permian tetrapods from the Sahara show climate-controlled endemism in Pangaea. Nature 434, 886–9.Google Scholar
Sinisi, R., Mongelli, G., Mameli, P. & Oggiano, G. 2014. Did the Variscan relief influence the Permian climate of Mesoeurope? Insights from geochemical and mineralogical proxies from Sardinia (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 396, 132–54.Google Scholar
Speksnijder, A. 1985. Anatomy of a strike-slip fault controlled sedimentary basin, Permian of the southern Pyrenees, Spain. Sedimentary Geology 44, 179223.Google Scholar
Stimson, M., Lucas, S. G. & Melason, G. 2012. The smallest known tetrapod footprints: Batrachichnus salamandroides from the Carboniferous of Joggins, Nova Scotia, Canada. Ichnos 19 (3), 127–40.Google Scholar
Talens, J. & Wagner, R. H. 1995. Stratigraphic implications of late Carboniferous and early Permjan megafloras in Lérida, south-central trences; Comparison with the Cantabrian Mountains. Coloquios de Paleontología 47, 177–92.Google Scholar
Tucker, L. & Smith, M. P. 2004. A multivaruate taxonomic analysis of the Late Carboniferous vertebrate ichnofauna of Alveley, Southern Shropshire, England. Palaeontology 47 (3), 679710.Google Scholar
Van Allen, H. E. K., Calder, J. H. & Hunt, A. P. 2005. The trackway record of a tetrapod community in a walchian conifer forest from the Permo-Carboniferous of Nova Scotia. New Mexico Museum of Natural History and Science Bulletin 30, 322–32.Google Scholar
Voigt, S. 2005. Die tetrapodenichnofauna des kontinentalen Oberkarbon und Perm im Thüringer Wald: Ichnotaxonomie, paläoökologie und biostratigraphie. PhD thesis, Cuvillier Verlag, Göttingen, Germany. Published thesis.Google Scholar
Voigt, S. 2012. Tetrapodenfährten im Rotliegend. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 61, 161–75.Google Scholar
Voigt, S., Berman, D. S. & Henrici, A. C. 2007. First well-established track-trackmaker association of Paleozoic tetrapods based on Ichniotherium trackways and diadectid skeletons from the Lower Permian of Germany. Journal of Vertebrate Paleontology 27, 553–70.Google Scholar
Voigt, S. & Ganzelewski, M. 2010. Toward the origin of amniotes: diadectomorph and synapsid footprints from the early Late Carboniferous of Germany. Acta Palaeontologica Polonica 55 (1), 5772.Google Scholar
Voigt, S. & Haubold, H. 2015. Permian tetrapod footprints from the Spanish Pyrenees. Palaeogeography, Palaeoclimatology, Palaeoecology 417, 112–20.Google Scholar
Voigt, S., Hminna, A., Saber, H., Schneider, J. W. & Klein, H. 2010. Tetrapod footprints from the uppermost level of the Permian Ikakern Formation (Argana Basin, Western High Atlas, Morocco). Journal of African Earth Sciences 57, 470–78.Google Scholar
Voigt, S., Lagnaoui, A., Hminna, A., Saber, H. & Schneider, J. W. 2011 a. Revisional notes on the Permian tetrapod ichnofauna from the Tiddas Basin, central Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology 302, 474–83.Google Scholar
Voigt, S. & Lucas, S. G. 2015. Permian tetrapod ichnodiversity of the Prehistoric Trackways National Monument (south-central New Mexico, U.S.A.). New Mexico Museum of Natural History and Science Bulletin 65, 153–67.Google Scholar
Voigt, S., Niedźwiedzki, G., Raczyński, P., Mastalerz, K. & Ptaszyński, T. 2012. Early Permian tetrapod ichnofauna from the Intra-Sudetic Basin, SW Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 313–314, 173–80.CrossRefGoogle Scholar
Voigt, S., Saber, H., Schneider, J. W., Hmich, D. & Hminna, A. 2011 b. Late Carboniferous-Early Permian tetrapod ichnofauna from the Khenifra Basin, central Morocco. Géobios 44, 399407.Google Scholar
Voigt, S., Small, B. J. & Sanders, F. 2005. A diverse terrestrial ichnofauna from the Maroon Formation (Pennsylvanian-Permian), Colorado: biostratigraphic and paleoecological significance. New Mexico Museum of Natural History and Science Bulletin 30, 342–51.Google Scholar
Woodworth, J. B. 1900. Vertebrate footprints on Carboniferous shales of Plainville, Massachusetts. Bulletin of the Geological Society of America 11, 449–54.Google Scholar
Whyte, M. A. & Romano, M. 2001. A dinosaur Ichnocoenosis from the Middle Jurassic of Yorkshire, UK. Ichnos 8, 223–34.Google Scholar
Ziegler, A. M., Hulver, M. L. & Rowley, D. B. 1997. Permian world topography and climate. In Late Glacial and Postglacial Environmental Changes: Pleistocene, Carboniferous-Permian, and Proterozoic (ed Martini, I. P.), pp. 111–46. Oxford University Press, Oxford.Google Scholar
Zwart, H. J. 1979. The geology of Central Pyrenees. Leidse Geologische Mededelingen 50, 174.Google Scholar
Supplementary material: File

Mujal supplementary material

Tables S1-S11

Download Mujal supplementary material(File)
File 71.2 KB
Supplementary material: Image

Mujal supplementary material

Figure S1

Download Mujal supplementary material(Image)
Image 677.5 KB
Supplementary material: Image

Mujal supplementary material

Figure S2

Download Mujal supplementary material(Image)
Image 6.1 MB
Supplementary material: Image

Mujal supplementary material

Figure S3

Download Mujal supplementary material(Image)
Image 4.2 MB
Supplementary material: Image

Mujal supplementary material

Figure S4

Download Mujal supplementary material(Image)
Image 2.9 MB
Supplementary material: Image

Mujal supplementary material

Figure S5

Download Mujal supplementary material(Image)
Image 8.1 MB
Supplementary material: File

Mujal supplementary material

Appendix

Download Mujal supplementary material(File)
File 57.3 KB