Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T12:08:28.876Z Has data issue: false hasContentIssue false

Oxygen and carbon isotope stratigraphy of early Cambrian carbonates in southeastern Newfoundland and England

Published online by Cambridge University Press:  01 May 2009

M. D. Brasier
Affiliation:
Department of Earth Sciences, Parks Road, Oxford OXI 3PR, U.K.
M. M. Anderson
Affiliation:
6 Maypark Place, St John's, Newfoundland AIB 2E3, Canada
R. M. Corfield
Affiliation:
Department of Earth Sciences, Parks Road, Oxford OXI 3PR, U.K.

Abstract

Carbonate rocks have been sampled through predominantly siliciclastic sediments above the Precambrian-Cambrian global stratotype level in southeastern Newfoundland to assess their potential for oxygen and carbon isotope stratigraphy. Comparable successions were sampled at Nuneaton and Comley in England. Greatly depleted δ18O signals are attributed to widespread thermal alteration during deep burial and granitic intrusion, including within the stratotype region. Carbon isotope ratios appear to have been less affected and these are described from nine sections. A provisional, composite δ13C curve is based on non-ferroan, pink nodular and bedded micrites. Several δ13C excursions occur in the fossiliferous Bonavista Group and allow the position of the Tommotian-Atdabanian boundary to be identified. Chemostratigraphic correlation of the new Precambrian-Cambrian boundary stratotype may, however, prove difficult because of the lack of suitable, well-preserved carbonates. The search must begin for a comparable reference section allowing global correlation of the boundary level using chemostratigraphy as well as biostratigraphy.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, K., Blenkinsop, J. & Strong, D. F. 1977. The geochronology of some granitic bodies from eastern Newfoundland and its bearing on Appalachian evolution. Canadian Journal of Earth Sciences 14, 456–76.Google Scholar
Bengtson, S. & Fletcher, T. P. 1983. The oldest sequence of skeletal fossils in the Lower Cambrian of south-eastern Newfoundland. Canadian Journal of Earth Sciences 20, 525–36.Google Scholar
Brand, U. 1989. Late Devonian biotic crisis: stable isotope biogeochemistry of North American and European brachiopods. Abstracts of the 28th International Geological Congress, Washington D.C. 1, 191–2.Google Scholar
Brasier, M. D. 1980. The Lower Cambrian transgression and glauconite-phosphorite facies in western Europe. Journal of the Geological Society, London 137, 695703.Google Scholar
Brasier, M. D. 1986. The succession of small shelly fossils (especially conoidal microfossils) from English Precambrian-Cambrian boundary beds. Geological Magazine 123, 327–56.CrossRefGoogle Scholar
Brasier, M. D. 1989 a. Sections in England and their correlation. In The Precambrian-Cambrian Boundary (eds Cowie, J. W. and Brasier, M. D.), pp. 82104. Oxford: Clarendon Press.Google Scholar
Brasier, M. D. 1989 b. Towards a biostratigraphy of the earliest skeletal biotas. In The Precambrian-Cambrian Boundary (eds Cowie, J. W. and Brasier, M. D.), pp. 117–65. Oxford: Clarendon Press.Google Scholar
Brasier, M. D. 1990. Phosphogenic events and skeletal preservation across the Precambrian-Cambrian boundary interval. In Phosphorite Research and Development (eds Notholt, A. J. and Jarvis, I.), pp. 289303. Geological Society Special Publication no. 52.Google Scholar
Brasier, M. D. in press. Towards a carbon isotope stratigraphy of the Cambrian System-potential of the Great Basin succession. In High Resolution Stratigraphy (eds Hailwood, E. and Kidd, R.). Special Publication of the Geological Society, London.Google Scholar
Brasier, M. D. & Cowie, J. W. 1989. Concluding remarks. In The Precambrian-Cambrian Boundary (eds Cowie, J. W. and Brasier, M. D.), pp. 205–9. Oxford: Clarendon Press.Google Scholar
Brasier, M. D., Hewitt, R. A. & Brasier, C. J. 1978. On the Late Precambrian-early Cambrian Hartshill Formation of Warwickshire. Geological Magazine 115, 2136.CrossRefGoogle Scholar
Brasier, M. D., Magaritz, M., Corfield, R., Luo Huilin, , Wu Xiche, , Ouyang Lin, , Jiang Zhiwen, , Hamdi, B., He Tinggui, & Fraser, A. G. 1990. The carbon-and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 127, 319–32.Google Scholar
Buchardt, B. & Nielsen, A. T. 1985. Carbon and oxygen isotope composition of Cambro-Ordovician limestone and anthraconite from Bornholm: evidence of deep burial diagenesis. Bulletin of the Geological Society of Denmark 33, 415–35.CrossRefGoogle Scholar
Conway Morris, S. 1989. South-east Newfoundland and adjacent areas. In The Precambrian-Cambrian Boundary (eds Cowie, J. W. and Brasier, M. D.), pp. 739. Oxford: Clarendon Press.Google Scholar
Conway Morris, S. & Rushton, A. W. A. 1988. Precambrian to Tremadoc biotas in the Caledonides. In The Caledonide–Appalachian Orogeny (eds Harris, A. L. and Fettes, D. G.), pp. 93109. Special Publication of the Geological Society, London no. 38.Google Scholar
Corfield, R. M., Cartlidge, J. E. Premoli-Silva, I. & Honsley, R. A. 1991. Oxygen and carbon isotope stratigraphy of the Palaeogene and Cretaceous limestones in the Bottaccione Gorge and the Contessa Highway sections, Umbria, Italy. Terra Nova 3, 414–22.Google Scholar
Corliss, B. H. 1985. Microhabitats of benthic foraminifera within deep-sea sediments. Nature 314, 435–8.CrossRefGoogle Scholar
Cowie, J. W. & Brasier, M. D. (eds) 1989. The Precambrian-Cambrian Boundary. Oxford: Clarendon Press.Google Scholar
Crimes, T. P. & Anderson, M. M. 1985. Trace fossils from late Precambrian-early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. Journal of Palaeontology 59, 310–43.Google Scholar
Fairchild, I. J., Marshall, J. D. & Bertrand-Sarfati, J. 1990. Stratigraphic shifts in carbon isotopes from Proterozoic stromatolitic carbonates (Mauritania): influences of primary mineralogy and diagenesis. American Journal of Science 290 –A, 4679.Google Scholar
Given, R. K. & Lohmann, K. C. 1986. Isotopic evidence for the early meteoric diagenesis of the reef facies, Permian reef complex of West Texas and New Mexico. Journal of Sedimentary Petrology 56, 183–93.Google Scholar
Grossman, E. L. 1984. Stable isotope fractionation in live benthic foraminifera from the southern California borderland. Palaeogeography, Palaeoecology, Palaeoclimatology 47, 301–27.Google Scholar
Hudson, J. D. 1977. Stable isotopes and limestone lithification. Journal of the Geological Society, London 136, 157–64.Google Scholar
Hudson, J. D. & Anderson, T. F. 1989. Ocean temperatures and isotopic compositions through time. Transactions of the Royal Society of Edinburgh: Earth Sciences 80, 183–92.CrossRefGoogle Scholar
Irwin, H. & Curtis, C. 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269, 209–13.Google Scholar
Kirschvink, J. L., Magaritz, M., Ripperdan, R. L. & Rozanov, A. Yu. 1991. The Precambrian-Cambrian boundary problem. H. Magnetostratigraphic and carbon isotope correlations for Tommotian and Atdabanian time between Siberia, Morocco and South China. Geology, submitted.Google Scholar
Krogh, I. E., Strong, D. F., O'brien, S. J. & Papezik, V. S. 1988. Precise U-Pb zircon dates from the Avalon Terrane in Newfoundland. Canadian Journal of Earth Sciences 25, 442–53.Google Scholar
Landing, E. 1988. Lower Cambrian of eastern Massachusetts: stratigraphy and small shelly fossils. Journal of Paleontology 62, 661–95.Google Scholar
Landing, E. & Benus, A. P. 1988 a. Stratigraphy of the Bonavista Group, southeastern Newfoundland: growth faults and the distribution of the sub-trilobitic Lower Cambrian. New York State Museum Bulletin 463, 5971.Google Scholar
Landing, E. & Benus, A. P. 1988 b. Cambrian depositional history and stratigraphy, Avalon–Bonavista region, southeastern Newfoundland. Field Trip Guidebook. Trip A3. St John's, Newfoundland: Geological Association of Canada.Google Scholar
Landing, E., Benus, P., Myrow, P. & Narbonne, G. M. 1989. The Placentian Series: appearance of the oldest skeletalized faunas in southeastern Newfoundland. Journal of Paleontology 63, 739–69.Google Scholar
Landing, E., Narbonne, G. M. & Myrow, P. 1988. Trace fossils, small shelly fossils and the Precambrian-Cambrian boundary. New York State Museum Bulletin 463, 1852.Google Scholar
le Bas, M. J. 1972. Caledonian igneous rocks beneath central and eastern England. Proceedings of the Yorkshire Geological Society 39, 7184.Google Scholar
McKerrow, W. S., Scotese, C. & Brasier, M. D. in press. Early Cambrian continental reconstructions. Journal of the Geological Society, London.Google Scholar
Magaritz, M., Holser, W. T. & Kirschvink, J. L. 1986. Carbon-isotope events across the Precambrian-Cambrian boundary on the Siberian Platform. Nature 320, 258–9.CrossRefGoogle Scholar
Marshall, J. D. & Ashton, M. 1980. Isotopic and trace element evidence for submarine lithification of hard-grounds in the Jurassic of England. Sedimentology 27, 271–89.Google Scholar
Moczydlowska, M. & Vidal, G. 1988. How old is the Tommotian? Geology 16, 166–8.Google Scholar
Myrow, P. M., Narbonne, G. M. & Hiscott, R. N. 1988. Storm-shelf and tidal deposits of the Chapel Island and Random Formations, Burin Peninsula: facies and trace fossils. Field Trip Guidebook. Trip B6. St John's, Newfoundland: Geological Association of Canada.Google Scholar
Narbonne, O. M., Myrow, P. M., Landing, E. & Anderson, M. 1987. A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences 24, 1277–93.Google Scholar
Rast, N., O'brien, B. H. & Wardle, R. F. L. 1976. Relationships between Precambrian and Lower Palaeozoic rocks of the ‘Avalon Platform’ in New Brunswick, the northeast Appalachians and the British Isles. Tectonophysics 30, 315–38.Google Scholar
Rushton, A. W. A. & Molyneux, S. G. 1990. The Withy-combe Formation (Oxfordshire subcrop) is of early Cambrian age. Geological Magazine 127, 363.Google Scholar
Schlanger, S. O., Arthur, M. A., Jenkyns, H. C. & Scholle, P. A. 1987. The Cenomanian–Turonian oceanic anoxic event. I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. In Marine Petroleum Source Rocks (eds Brooks, J. and Fleet, A.), pp. 371–99. Geological Society of London, Special Publication no. 26.Google Scholar
Smith, S. A. & Hiscott, R. N. 1984. Latest Precambrian to Early Cambrian basin evolution, Fortune Bay, New-foundland: fault-bounded basin to platform. Canadian Journal of Earth Sciences 21, 1379–92.Google Scholar
Strauss, H., Bengtson, S., Myrow, P. & Vidal, O. 1990. Late Proterozoic to early Cambrian sediments from Newfoundland–stable isotope geochemistry. In Abstracts of tile Third International Symposium on the Cambrian System, Novosibirsk, 1990 (eds Repina, L. N. and Zhuravlev, A. J.), p. 159. Novosibirsk.Google Scholar
Taylor, H. P. 1977. Water/rock interactions and the origin of H2O in granite batholiths. Journal of the Geological Society, London 133, 509–58.CrossRefGoogle Scholar
Tucker, M. E. & Wright, V. P. 1990. Carbonate Sedimentology. Oxford: Blackwell Scientific.CrossRefGoogle Scholar
Tucker, R. D. & Pharaoh, T. C. 1991. U-Pb zircon ages for Late Precambrian igneous rocks in southern Britain. Journal of the Geological Society, London 148, 435–44.Google Scholar
Vincent, E., Killingley, J. S. & Berger, W. H. 1981. Stable isotope composition of benthic foraminifera from the equatorial Pacific. Nature 289, 639–42.Google Scholar
Williams, D. F., Lerche, I. & Full, W. E. 1988. Isotope Chronostratigraphy, Theory and Methods. San Diego: Academic Press.Google Scholar
Williams, H. 1966. Map 1231A, Geology, Island of Newfoundland, scale 1:1000 000. Geological Survey of Canada, Ottawa.Google Scholar
Wills, L. H. 1978. A Palaeogeological Map of the Lower Palaeozoic Floor below the Cover of Upper Devonian, Carboniferous and Later Formations. Memoir of the Geological Society, London no. 8.Google Scholar
Wilmot, N. & Fallick, A. E. 1989. Original mineralogy of trilobite exoskeletons. Palaeontology 32, 297304.Google Scholar