Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T07:54:06.144Z Has data issue: false hasContentIssue false

The origin of the c. 1.7 Ga gabbroic intrusion in the Hekou area, SW China: constraints from SIMS U–Pb zircon geochronology and elemental and Nd isotopic geochemistry

Published online by Cambridge University Press:  09 February 2016

WEI-GUANG ZHU*
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 West Lincheng Road, Guiyang 550081, China
ZHONG-JIE BAI
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 West Lincheng Road, Guiyang 550081, China
HONG ZHONG
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 West Lincheng Road, Guiyang 550081, China
XIAN-TAO YE
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 West Lincheng Road, Guiyang 550081, China
HONG-PENG FAN
Affiliation:
State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 West Lincheng Road, Guiyang 550081, China
*
*Author for correspondence: [email protected]

Abstract

The late Palaeoproterozoic to early Mesoproterozoic igneous rocks of southwestern China are characterized by a number of mafic intrusions and dykes. However, the origin and tectonic implications of these mafic intrusions and dykes remain unclear. The Hekou mafic intrusion, intruding into the Hekou Group in the Hekou area, SW China, is the biggest and most representative one. The intrusion is mainly composed of coarse-grained in the central zone (CZ) and medium- to fine-grained gabbroic rocks in the outer zone (OZ). Cameca secondary ion mass spectroscopy (SIMS) U–Pb zircon ages, and geochemical and Nd isotopic results for the intrusion are reported in this paper. SIMS U–Pb zircon ages indicate that the gabbroic rocks from the CZ and OZ were emplaced at 1735±6.5 Ma and 1736±4.0 Ma, respectively. This suggests that the Hekou intrusion originated from c. 1.7 Ga mafic magmatism in the southwestern Yangtze Block. The coarse-grained rocks in the CZ of the intrusion show fairly homogeneous major- and trace-element compositions. In contrast, the medium- to fine-grained rocks from the OZ display slightly evolved compositions, with relatively lower Mg nos, MgO, Al2O3, Cr and Ni contents, and higher SiO2, CaO and Zr concentrations than those of the rocks from the CZ. Although the gabbroic rocks of the intrusion have low total rare earth element (REE) contents (REE = 29.3–40.2 ppm) with slightly light REE (LREE)-enriched and heavy REE (HREE)-depleted patterns, they exhibit distinct trace-element and Nd isotopic features. The rocks from the CZ are characterized by slightly LREE-enriched and ‘convex upwards’ incompatible trace-element patterns with significant Th depletion and insignificant Nb and Ta depletion relative to La. However, the rocks from the OZ have relatively flatter REE patterns than those of the rocks from the CZ. In addition, the rocks from the OZ are slightly enriched in Th and depleted in Nb and Ta relative to La. The εNd(T) values of the CZ and the OZ rocks are +0.70 to +2.3 and −0.30 to +0.24, respectively. The parental magma for the Hekou gabbroic intrusion exhibits affinity with a subalkaline basaltic magma, which was possibly generated by relatively high degrees of partial melting of a slightly depleted asthenospheric mantle source. Their geochemical and isotopic variations were due to slight crystal fractionation with varying degrees of crustal contamination. The Hekou intrusion was therefore supposed to form in an anorogenic extensional environment. It is further suggested that c. 1.7 Ga is an important onset timing of widespread anorogenic magmatism in the southwestern Yangtze Block. We interpret the late Palaeoproterozoic gabbroic intrusion to represent anorogenic mafic magmatism, which was most likely related to the break-up of the Columbia supercontinent.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barth, M. G., McDonough, W. F. & Rudnick, R. L. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology 165, 197213.CrossRefGoogle Scholar
Boynton, W. V. 1984. Geochemistry of the rare earth elements: meteorite studies. In Rare Earth Element Geochemistry (ed. Henderson, P.), pp. 63114. Amsterdam: Elsevier.CrossRefGoogle Scholar
Chang, X., Zhu, B., Sun, D., Qiu, H. & Zou, R. 1997. Isotope geochemistry study of Dongchuan copper deposits in Middle Yunnan Province, SW China: stratigraphic chronology and application of geochemical exploration by lead isotopes. Geochimica 26, 32–8 (in Chinese with English abstract).Google Scholar
Chen, Z. C., Lin, W., Faure, M., Lepvrier, C., Chu, Y. & Wang, Q. C. 2013. Geochronological constraint of early Mesozoic tectonic event at Northeast Vietnam. Acta Petrologica Sinica 29, 1825–40.Google Scholar
Chen, L., Zhang, Z. & Song, H. 2013. Weak depth and along-strike variations in stretching from a multi-episodic finite stretching model: evidence for uniform pure-shear extension in the opening of the South China Sea. Journal of Asian Earth Sciences 78, 358–70.CrossRefGoogle Scholar
Chen, W. T. & Zhou, M. F. 2012. Paragenesis, stable isotopes, and molybdenite Re–Os isotope age of the Lala iron–copper deposit, Southwest China. Economic Geology 107, 459–80.CrossRefGoogle Scholar
Chen, W. T., Zhou, M. F. & Zhao, X. F. 2013. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China: implication for the reconstruction of the Yangtze Block in Columbia. Precambrian Research 231, 6177.CrossRefGoogle Scholar
Cong, B. L. (ed.) 1988. Formation and Evolution of Panxi Paleo-Rift. Beijing: Science Press, 424 pp (in Chinese with English abstract).Google Scholar
Cox, K. G., Bell, J. D. & Pankhurst, R. J. 1979. The Interpretation of Igneous Rocks. London: Allen and Unwin, 450 pp.CrossRefGoogle Scholar
Deniel, C. 1998. Geochemical and isotopic (Sr, Nd, Pb) evidence for plume-lithosphere interactions in the genesis of Grande Comore magmas (Indian Ocean). Chemical Geology 144, 281303.CrossRefGoogle Scholar
Evans, D. A. D. & Mitchell, R. N. 2011. Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology 39, 443–6.CrossRefGoogle Scholar
Ewart, A., Milner, S. C., Armstrong, R. A. & Duncan, A. R. 1998. Etendeka volcanism of the Goboboseb Mountains and Messum igneous complex, Namibia. Part I: geochemical evidence of early Cretaceous Tristan Plume melts and the role of crustal contamination in the Parana-Etendeka CFB. Journal of Petrology 39, 191225.CrossRefGoogle Scholar
Fan, H. P., Zhu, W. G., Li, Z. X., Zhong, H., Bai, Z. J., He, D. F., Chen, C. J. & Chao, C. Y. 2013. Ca. 1.5 Ga mafic magmatism in South China during the break-up of the supercontinent Nuna/Columbia: the Zhuqing Fe–Ti–V oxide ore-bearing mafic intrusions in western Yangtze Block. Lithos 168–169, 8598.CrossRefGoogle Scholar
Gao, S., Yang, J., Zhou, L., Li, M., Hu, Z., Guo, J., Yuan, H., Gong, H., Xiao, G. & Wei, J. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses. American Journal of Science 311, 153–82.CrossRefGoogle Scholar
Garland, F., Turne, S. & Hawkesworth, C. 1996. Shifts in the source of the Paraná basalts through time. Lithos 37, 223–43.CrossRefGoogle Scholar
Geng, Y., Yang, C., Du, L., Wang, X., Ren, L. & Zhou, X. 2007. Chronology and tectonic environment of the Tianbaoshan formation: new evidence from zircon SHRIMP U–Pb age and geochemistry. Geological Review 53, 556–63 (in Chinese with English abstract).Google Scholar
Gibson, S. A., Kirkpatrick, R. J., Emmerman, R., Schmincke, P. H., Pritchard, G., Okay, P. J., Horpe, R. S. & Marriner, G. F. 1982. The trace element composition of the lavas and dykes from a 3 km vertical section through a lava pile of Eastern Iceland. Journal of Geophysical Research 87, 6532–46.CrossRefGoogle Scholar
Greentree, M. R. & Li, Z. X. 2008. The oldest known rocks in south-western China: SHRIMP U–Pb magmatic crystallization age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences 33, 289302.CrossRefGoogle Scholar
Greentree, M. R., Li, Z. X., Li, X. H. & Wu, H. 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Research 151, 79100.CrossRefGoogle Scholar
Guan, J. L., Zheng, L. L., Liu, J. H., Sun, Z. M. & Cheng, W. H. 2011. Zircons SHRIMP U–Pb dating of dolerite from Hekou, Sichuan Province, China and its geological significance. Acta Geologica Sinica 85, 482–90 (in Chinese with English abstract).Google Scholar
Hoffman, P. F. 1989. Speculations on Laurentia's first gigayear (2.0 to 1.0 Ga). Geology 17, 135–8.2.3.CO;2>CrossRefGoogle Scholar
Hoffman, P. F. 1997. Tectonic genealogy of North America. In Earth Structure: An Introduction to Structural Geology and Tectonics (eds Van der Pluijm, B. A. & Marshak, S.), pp. 459–64. New York: McGraw-Hill.Google Scholar
Hou, G., Li, J. H., Yang, M. H., Yao, W. H., Wang, C. C. & Wang, Y. X. 2008 a. Geochemical constraints on the tectonic environment of the Late Paleoproterozoic mafic dyke swarms in the North China Craton. Gondwana Research 13, 103–16.CrossRefGoogle Scholar
Hou, G., Santosh, M., Qian, X., Lister, G. S. & Li, J. 2008 b. Configuration of the Late Paleoproterozoic supercontinent Columbia: insights from radiating mafic dyke swarms. Gondwana Research 14, 395409.CrossRefGoogle Scholar
Hua, R. M. 1990. On the Kunyang Aulacogen. Acta Geologica Sinica 64, 289301 (in Chinese with English abstract).Google Scholar
Ingle, S., Weis, D, Scoates, J. S. & Frey, F. A. 2002. Relationship between the early Kerguelen plume and continental flood basalts of the paleo-eastern Gondwanan margins. Earth and Planetary Science Letters 197, 3550.CrossRefGoogle Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapovm, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.CrossRefGoogle Scholar
Li, X. H., Li, Z. X., Sinclair, J. A., Li, W. X. & Carter, G. 2006. Revisiting the “Yanbian Terrane”: implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Research 151, 1430.CrossRefGoogle Scholar
Li, X. H., Li, W. X., Wang, X. C., Li, Q. L., Liu, Y., Tang, G. Q., Gao, Y. Y. & Wu, F. Y. 2010. SIMS U–Pb zircon geochronology of porphyry Cu-Au-(Mo) deposits in the Yangtze River Metallogenic Belt, eastern China: magmatic response to early Cretaceous lithospheric extension. Lithos 119, 427–38.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Zhou, H. & Kinny, P. D. 2002. Grenvillian continental collision in South China: new SHRIMP U–Pb zircon results and implications for the configuration of Rodinia. Geology 30, 163–6.2.0.CO;2>CrossRefGoogle Scholar
Li, X. H., Liu, Y., Li, Q. L. & Guo, C. H., Chamberlain, K. R. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multi-collector SIMS without external standardization. Geochemistry Geophysics Geosystems 10, Q04010, doi: 10.1029/2009GC002400.Google Scholar
Li, Z. X., Wartho, J. A., Occhipinti, S., Zhang, C. L., Li, X. H., Wang, J. & Bao, C. M. 2007. Early history of the eastern Sibao orogen (South China) during the assembly of Rodinia: new 40Ar/39Ar dating and U–Pb SHRIMP detrital zircon provenance constraints. Precambrian Research 159, 7494.CrossRefGoogle Scholar
Li, Z. X., Zhang, L. & Powell, C. M. C. A. 1995. South China in Rodinia: part of the missing link between Australia–East Antarctica and Laurentia? Geology 23, 407–10.2.3.CO;2>CrossRefGoogle Scholar
Lightfoot, P. C., Hawkesworth, C. J., Hergt, J., Naldrett, A. J., Gorbachev, N. S., Fedorenko, V. A. & Doherty, W. 1993. Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk District, Siberian Trap, Russia. Contributions to Mineralogy and Petrology 114, 171–88.CrossRefGoogle Scholar
Loucks, R. R. 1990. Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene. Geology 18, 346–9.2.3.CO;2>CrossRefGoogle Scholar
Lugmair, G. W. & Harti, K. 1978. Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39, 349–57.CrossRefGoogle Scholar
Meert, J. G. 2012. What's in a name? The Columbia (Paleopangaea/Columbia) supercontinent. Gondwana Research 21, 987–93.CrossRefGoogle Scholar
Mou, C. L., Lin, S. L. & Yu, Q. 2003. The U–Pb ages of the volcanic rock of the Tianbaoshan formation, Huili, Sichuan province. Journal of Stratigraphy 27, 216–9 (in Chinese with English abstract).Google Scholar
Ormerod, D. S., Hawkesworth, C. J., Rogers, N. W., Leeman, W. P. & Menzies, M. A. 1988. Tectonic and magmatic transitions in the western Great Basin, USA. Nature 333, 349–53.CrossRefGoogle Scholar
Paces, J. B. & Bell, K. 1989. Non-depleted sub-continental mantle beneath the Superior Province of the Canadian Shield: Nd–Sr isotopic and trace element evidence from midcontinent rift basalts. Geochimica et Cosmochimica Acta 53, 2023–35.CrossRefGoogle Scholar
Peng, M., Wu, Y. B., Gao, S., Zhang, H. F, Wang, J., Liu, X. C., Gong, H. J., Zhou, L., Hu, Z. C., Liu, Y. S. & Yan, H. L. 2012. Geochemistry, zircon U–Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: constraints on petrogenesis and geologic implications. Gondwana Research 22, 140–51.CrossRefGoogle Scholar
Peng, M., Wu, Y. B., Wang, J., Jiao, W. F., Liu, X. C. & Yang, S. H. 2009. Paleoproterozoic mafic dyke from Kongling terrain in The Yangtze Craton and its implication. Chinese Science Bulletin 54, 1098–104.CrossRefGoogle Scholar
Peng, P., Zhai, M.-G., Ernst, R., Guo, J.-H., Liu, F. & Hu, B. 2008. A 1.78 Ga Large Igneous Province in the North China craton: the Xiong'er Volcanic Province and the North China dyke swarm. Lithos 101, 260–80.CrossRefGoogle Scholar
Peng, P., Zhai, M. G. & Guo, J. H. 2006. 1.80–1.75 Ga mafic dyke swarms in the central North China craton: implications for a plume-related break-up event. In Dyke Swarms—Time Markers of Crustal Evolution (eds Hanski, E., Mertanen, S., Ramö, T. & Vuollo, J.). Oxford: Taylor & Francis.Google Scholar
Peng, P., Zhai, M. G., Guo, J. H., Kusky, T. & Zhao, T. P. 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78 Ga mafic dykes in the central North China craton. Gondwana Research 12, 2946.CrossRefGoogle Scholar
Pik, R., Deniel, C., Coulon, C., Yirgu, G., Hofmann, C. & Ayalew, D. 1998. The northwestern Ethiopian plateau flood basalts: classification and spatial distribution of magma types. Journal of Volcanology and Geothermal Research 81, 91111.CrossRefGoogle Scholar
Polat, A., Hofmann, A. W. & Rosing, M. T. 2002. Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intraoceanic subduction zone processes in the early Earth. Chemical Geology 184, 231–54.CrossRefGoogle Scholar
Qi, L., Hu, J. & Gregoire, D. C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51, 507–13.Google Scholar
Rogers, J. J. W. & Santosh, M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research 5, 522.CrossRefGoogle Scholar
Rudnick, R. L. & Fountain, D. M. 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics 33, 267309.CrossRefGoogle Scholar
SBG (Sichuan Bureau of Geology). 1967. A report of regional geological survey in Huili area of the people's republic of China (the scale of 1:200000) (in Chinese).Google Scholar
SBGMR (Sichuan Bureau of Geology and Mineral Resources). 1991. Regional Geology of Sichuan Province. Beijing: Geology Publishing House, 730 pp (in Chinese with English abstract).Google Scholar
Sun, M., Chen, N., Zhao, G., Wilde, S. A., Ye, K., Guo, J., Chen, Y. & Yuan, C. 2008. U–Pb zircon and Sm–Nd isotopic study of the Huangtuling granulite, Dabie-Sulu belt, China: implication for the Paleoproterozoic tectonic history of the Yangtze Craton. American Journal of Science 308, 469–83.CrossRefGoogle Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Sun, Z. M., Yin, F. G., Guan, J. L., Liu, J. H., Li, J. M., Geng, Y. R. & Wang, L. Q. 2009. SHRIMP U–Pb dating and its stratigraphic significance of tuff zircons from Heishan formation of Kunyang Group, Dongchuan area, Yunnan Province, China. Geological Bulletin of China 28, 896900 (in Chinese with English abstract).Google Scholar
Wang, W. & Zhou, M. F. 2014. Provenance and tectonic setting of the Paleo- to Mesoproterozoic Dongchuan Group in the southwestern Yangtze Block, South China: implication for the breakup of the supercontinent Columbia. Tectonophysics 610, 110–27.CrossRefGoogle Scholar
Wang, L. J., Griffin, W. L., Yu, J. H. & O'Reilly, S. Y. 2010. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Research 177, 131–44.CrossRefGoogle Scholar
Wang, L. J., Yu, J. H., Griffin, W. L. & O'Reilly, S. Y. 2012. Early crustal evolution in the western Yangtze Block: evidence from U–Pb and Lu–Hf isotopes on detrital zircons from sedimentary rocks. Precambrian Research 222–223, 368–85.CrossRefGoogle Scholar
Wingate, M. T. D. & Compston, W. 2000. Crystal orientation effects during ion microprobe U–Pb analysis of baddeleyite. Chemical Geology 168, 7597.CrossRefGoogle Scholar
Wood, D. A., Joron, J. L. & Treuil, M. 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters 45, 326–36.CrossRefGoogle Scholar
Wu, M. D., Duan, J. S., Song, X. L., Chen, L. & Dan, Y. 1990. Geology of Kunyang Group in Yunnan Province. Kunming: Scientific Press of Yunnan Province, 265 pp (in Chinese with English abstract).Google Scholar
Wu, Y. B., Zheng, Y. F., Gao, S., Jiao, W. F. & Liu, Y. S. 2008. Zircon U–Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos 101, 308–22.CrossRefGoogle Scholar
Xiong, Q., Zheng, J. P., Yu, C. M., Su, Y. P., Tang, H. Y. & Zhang, Z. H. 2009. Zircon U–Pb age and Hf isotope of Quanyishang A-type granite in Yichang: signification for the Yangtze continental cratonization in Paleoproterozoic. Chinese Science Bulletin 54, 436–46.CrossRefGoogle Scholar
Xu, Y. G., Chung, S. L., Jahn, B. M. & Wu, G. Y. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China. Lithos 58, 145–68.CrossRefGoogle Scholar
Yao, J., Shu, L. & Santosh, M. 2011. Detrital zircon U–Pb geochronology, Hf-isotopes and geochemistry — new clues for the Precambrian crustal evolution of Cathaysia Block, South China. Gondwana Research 20, 553–67.CrossRefGoogle Scholar
Yin, F. G., Sun, Z. M. & Zhang, Z. 2011. Mesoproterozoic stratigraphic-structure framework in Huili-Dongchuan area. Geology Review 57, 770–8 (in Chinese with English abstract).Google Scholar
Zhang, C. H., Gao, L. Z., Wu, Z. J., Shi, X. Y., Yan, Q. R. & Li, D. J. 2007. SHRIMP U–Pb zircon age of tuff from the Kunyang group in central Yunnan: evidence for Grenvillian orogeny in south China. Chinese Science Bulletin 52, 1517–25.CrossRefGoogle Scholar
Zhang, S., Li, Z. X., Evans, D. A. D., Wu, H. & Li, H. 2012. Pre-Rodinia supercontinent Nuna shaping up: a global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters 353–354, 145–55.CrossRefGoogle Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006 a. Zircon isotope evidence for ≥ 3.5 Ga continental crust in the Yangtze craton of China. Precambrian Research 146, 1634.CrossRefGoogle Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006 b. Zircon U–Pb age and Hf–O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research 151, 265–88.CrossRefGoogle Scholar
Zhao, G. C., Cawood, P. A., Wilde, S. A. & Sun, M. 2002 a. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews 59, 125–62.CrossRefGoogle Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews 67, 91123.CrossRefGoogle Scholar
Zhao, X. F. & Zhou, M. F. 2011. Fe–Cu deposits in the Kangdian region, SW China: a Proterozoic IOCG (iron–oxide–copper–gold) metallogenic province. Mineralium Deposita 46, 731–47.CrossRefGoogle Scholar
Zhao, X. F., Zhou, M. F., Li, J. W., Sun, M., Gao, J. F., Sun, W. H. & Yang, J. H. 2010. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: implications for tectonic evolution of the Yangtze Block. Precambrian Research 182, 5769.CrossRefGoogle Scholar
Zhao, X. F., Zhou, M. F., Li, J. W. & Qi, L. 2013. Late Paleoproterozoic sedimentary rock-hosted stratiform copper deposits in South China: their possible link to the supercontinent cycle. Mineralium Deposita 48, 129–36.CrossRefGoogle Scholar
Zhao, T. P., Zhou, M. F., Zhai, M. G. & Xia, B. 2002 b. Paleoproterozoic rift-related volcanism of the Xiong'er group, North China craton: implications for the breakup of Columbia. International Geology Review 44, 336–51.CrossRefGoogle Scholar
Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., Zhang, M., Pearson, N. & Pan, Y. 2006. Widespread Archean basement beneath the Yangtze Craton. Geology 34, 417–20.CrossRefGoogle Scholar
Zhou, M. F., Zhao, X. F., Chen, W., Li, X. C., Wang, W., Yan, D. P. & Qiu, H. N. 2014. Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam. Earth-Science Reviews 139, 5982.CrossRefGoogle Scholar
Zhou, J. Y., Zheng, R. C., Zhu, Z. M., Chen, J. B., Shen, B., Li, X. Y. & Luo, L. P. 2009. Geochemistry and Sm–Nd dating of the gabbro in the Lala copper ore district, Sichuan Province. China. Bulletin of Mineralogy, Petrology and Geochemistry 28, 111–22 (in Chinese with English abstract).Google Scholar
Supplementary material: File

Zhu supplementary material S1

Appendix

Download Zhu supplementary material S1(File)
File 228.4 KB