Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T21:49:17.096Z Has data issue: false hasContentIssue false

Origin and emplacement of an inferred late Jurassic subduction-accretion complex, Euboea, eastern Greece

Published online by Cambridge University Press:  01 May 2009

A. H. F. Robertson
Affiliation:
Department of Geology and Geophysics, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JW, Scotland

Abstract

In northern Euboea, central eastern Greece, an up to 3 km-thick polygenetic melange (Pagondas complex) is structurally interleaved between a Triassic–Jurassic carbonate platform (Pelagonian Zone) and an overriding harzburgitic ophiolite. The melange mainly comprises late Triassic shallow-water limestone and calciturbidites, radiolarites, Triassic–Jurassic tholeiites, alkaline basalts and minor andesites. The units concerned range from kilometre-sized thrust sheets, and detached blocks, to broken formation and structureless, or bedded matrix-supported conglomerates (diamictite). The melange includes remnants of Neotethyan oceanic lithosphere, overlain by radiolarites, hemipelagic carbonates and distal calciturbidites derived from a Mesozoic carbonate platform. Tholeiites were erupted at a Triassic–Jurassic spreading axis, whilst within-plate-type alkali basalts are interpreted mainly as seamounts. Kilometre-scale detached blocks of shallow-water coralline limestone are identified as collapsed atolls, formed within an ocean and/or along the rifted continental margin. Volcaniclastic sediments are locally interbedded with radiolarite, and reflect post-volcanic erosion of the ocean floor. Intra-oceanic convergence began, apparently in late early Jurassic time, giving rise to the Euboea ophiolite above an inferred westwards-dipping subduction zone. The Pagondas Complex then developed as an accretionary prism. The subduction trench later collided with the Pelagonian passive margin, driving the hot Euobea ophiolite over the accretionary complex, to produce amphibolites and greenschists of the metamorphic sole. Trench–margin collision then drove the entire supra-subduction zone complex, apparently eastwards, downflexing the Pelagonian carbonate platform to form a foredeep in which late Jurassic (Kimmeridgian–Tithonian) radiolarian sediments accumulated. During emplacement, the accretionary complex was disrupted and partly resedimented as debris flows, turbiditic volcaniclastic sandstone and shale in a foredeep, or foreland basin setting.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubouin, J., Bonneau, M., Celet, P., Charvet, J., Clément, B., Degardin, J. M., Dercourt, J., Ferrière, J., Fleury, J. J., Guernet, C., Maillot, H., Mannia, J., Mansy, J. L., Terry, J., Thiébault, F., Tsoflias, P. & Verriez, J. J. 1970. Contribution à lagéologie des Héllenides. Le Gavrovo, Le Pinde et la Zone Ophiolitique Subpélagonienne. Annals de la Société Géologique du Nord 90, 277306.Google Scholar
Aubouin, J. & Guernet, Cl. 1963. Sur la stratigraphieet la téctonique de l' Eubée moyenne, Grèce. Bulletin de la Société Géologique de France 5, 821–7.CrossRefGoogle Scholar
Barany, I. & Karson, J. A. 1989. Basaltic breccias ofthe Clipperton fracture zone: sedimentation and tectonics in a fast-slipping oceanic transform. Geological Society of America Bulletin 101, 204–20.2.3.CO;2>CrossRefGoogle Scholar
Bernoulli, D. & Laubscher, H. 1972. The palinspastic problem of the Hellenides. Eclogae Geological Helveticae 67, 107–18.Google Scholar
Baumgartner, P. O. 1984. A Middle Jurassic–Early Cretaceouslow latitude radiolarian zonation based on unitary associations and age of Tethyan radiolarites. Eclogae Geologicae Helveticae 7, 729836.Google Scholar
Baumgartner, P. O. 1985. Jurassic sedimentary evolution and nappeemplacement in the Argolis Peninsula (Peloponnesus, Greece). Mémoire de la Société Helvétique pour la Science Naturelle, 111 pp.Google Scholar
Baumgartner, P. O. & Bernoulli, D. 1976. Stratigraphyand radiolarian fauna in a Late Jurassic–Early Cretaceous section near Achladi (Evvoia, Eastern Greece. Eclogae Geologicae Helveticae 69, 601–26.Google Scholar
Bouma, A. H. 1962. Sedimentology of some Flysch Deposits: A Graphic Approach to Fades Interpretation. Amsterdam: Elsevier, 168 pp.Google Scholar
Bertrand, J., Economou, C. & Skounakis, S. 1980. Rodingites et autres inclusions du complexe ophiolitique de l' Eubée centrale (Gréce). Region Mont Kandili, Col d' Aghios, Pagondas. Archives des Sciences, Genéve 33, 225–55.Google Scholar
Clément, B. 1977. Relations structural entre la zone du Parnasse et le zone Pélagonienne en Béotie (Gréce continentale). Proceedings. 6th Colloquinm on Aegean Geology, Athens, 1977.Google Scholar
Clift, P. D. & Robertson, A. H. F. 1990. Deep water basins within the Mesozoic carbonate platform of Argolis, Greece. Journal of the Geological Society, London 147, 825–36.CrossRefGoogle Scholar
Cloos, M. 1982. Flow melanges: numerical modeling and geologic constraints on their origin in the Franciscan subduction complex, California. Geological Society of America Bulletin 93, 330–45.2.0.CO;2>CrossRefGoogle Scholar
Cooper, D. W. J. 1990. Sedimentary evolution and palaeo-geographical reconstruction of the Mesozoic continental rise in Oman: evidence from the Hamrat Duru Group. In The Geology and Tectonics of the Oman Region (eds Robertson, A. H. F., Searle, M. P. and Ries, A. C.), pp. 161–88. Special Publication of the Geological Society of London no. 49.Google Scholar
Cowan, D. S. 1984. Structural features at the deformation front of the Barbados Ridge Complex, Deep Sea Drilling Project Leg 78A. Initial Reports of the Deep Sea Drilling Project 78A, 535–48. U.S. Govt. Printing Office.Google Scholar
Ferriére, J., Bertrand, J., Simantov, J. & DeWever, P. 1988. Comparison entre des formations volcano-detrique (‘ Mélanges’) du malm des Héllenides internes (Othrys, Eubée), implications géodynamique. Bulletin of the Geological Society of Greece 20, 223–35.Google Scholar
Fleury, J. J. 1980. Les zones de Gavrova-Tripolitza et du Pinde-Olonos (Gréce Continental), et Peloponnesse du Nord. Evolution d'une plate-forme et d'un bassin dans leur cadre Alpin. Publication, Société Géologique du Nord 4, 1651.Google Scholar
Guernet, C. 1965. Formations éruptives ante jurassique en Ebée moyenne. Bulletin de la Société Géologique de France 7, 5668.CrossRefGoogle Scholar
Guernet, C. & Robert, P. 1973. Sur l'existance de bauxites d'age jurassique en Eubée (Gréce). Compte Rendu de 1'Académie des Sciences, Paris 276, 885–87.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G. & Smith, D. G. 1990. A Geologic Time Scale 1989. Cambridge University Press.Google Scholar
Jones, G. & Robertson, A. H. F. 1990. Tectono-stratigraphy and evolution of the Mesozoic Pindos ophiolite and related units, northwestern Greece. Journal of the Geological Society, London 147, in press.Google Scholar
Jones, G., Robertson, A. H. F. & Cann, J. R. in press. Genesis and emplacement of a supra-subduction zone ophiolite, Northwest Greece. In Proceedings Symposium on Ophiolite Genesis and Oceanic Lithosphere, UNESCO-Sultan Qaboos University (in press).Google Scholar
Karamata, S. 1988. ‘The Diabase-chert Formation’ somegenetic aspects. Bulletin T XCV de 1' Académie Serbe des Sciences etdes Arts (Sciences Naturelles) 28, 111.Google Scholar
Katsikatsos, G., Migiros, G., Triantaphyllis, M. & Mettos, A. 1986. Geological structure of internal Hellenides (E. Thessaly–S. W. Macedonia, Euboea–Attica–Northern Cyclades Islands and Lesvos). Publication of IGME (Athens). Geological and Geophysical Research, Special Issue, 191212.Google Scholar
Kaufmann, G. 1976. Perm and Trias in öestlichen Mittel Griechenland und auf einigen ägäischen Inseln. Zeit-schrift der Deutschen Geologischen Gesellscaft 127, 387–98.Google Scholar
Kissel, C. & Laj, C. 1988. The Tertiary geodynamical evolution of the Aegean arc: a paleomagnetic reconstruction. Tectonophysics 146, 183201.CrossRefGoogle Scholar
Leggett, J. K. (ed.) 1982. Trench-forearc geology: sedimentation and tectonics on modern and ancient active plate margins. Geological Society of London Special Publication no. 10, 576 pp.Google Scholar
Lippard, S. J., Shelton, A. W. & Gass, I. G. 1986. The ophiolite of northern Oman. Geological Society of London Memoir no. 11, 178 pp.Google Scholar
Ogawa, Y. & Miyata, Y. 1985. Vein structure and its deformational history in the sedimentary rocks of the Middle America trench slope off Guatemala, Deep Sea Drilling Project Leg 84. Initial Reports of the Deep Sea Drilling Project 84, 811–29. Washington: U.S. Government Printing Office.Google Scholar
Parrot, J. F. & Guernet, C. 1972. Le cortège ophiolitique de l' Eubée moyenne (Gréce): étude pétrographique des formations volcanique et des roches métamorphiques associées dans les Monts Kandili aux radiolarites. Cahiers Orstrom, Série Géologique. Office de la Recherche Scientifique et Technique d' Outre-Mer. Paris 4, 153161.Google Scholar
Pearce, J. A. 1980. Geochemical evidence for the genesis and eruptive setting of lavas from Tethyan ophiolites. In Ophiolites (ed. Panayiotou, A.), 11. 261–71. Proceedings of the International Ophiolite Symposium, Cyprus 1979, Geological Survey of Cyprus, Nicosia.Google Scholar
Pearce, J. A., Lippard, S. J. & Roberts, S. 1982. Characteristics and tectonic significance of supra-subduction zone ophiolites. In Marginal Basin Geology (eds. Kokelaar, B. P. and Howells, M. F.), pp. 7798. Geological Society of London Special Publication no. 16.Google Scholar
Pe-Piper, G. 1982. Geochemistry, tectonic setting and metamorphism of mid-Triassic volcanic rocks of Greece. Tectonophysics 85, 253–72.CrossRefGoogle Scholar
Pe-Piper, G. & Panagos, A. G. 1989. Geochemical characteristics of the Triassic volcanic rocks of Evia: petrogenetic and tectonic implications. Ofioliti 14, 3350.Google Scholar
Philippson, A. 1898. La tectonique de l' Egeide. Annales de Géographie Paris 112–41.CrossRefGoogle Scholar
Price, I. 1976. Carbonate sedimentology in a pre-Upper Cretaceous continental margin sequence, Othris, Greece, Bulletin de la Société Géologique de France (7), 18, 273–9.CrossRefGoogle Scholar
Ricou, L.-E., Marcoux, J. & Whitechurch, H. 1984. The Mesozoic organisation of the Taurides: one or several ocean basins. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. and Robertson, A. H. F.), pp. 349–61. Geological Society of London Special Publication no. 17.Google Scholar
Robertson, A. H. F. 1987. The transition from a passive margin to an Upper Cretaceous foreland basin related to ophiolite emplacement in the Oman Mountains. Geological Society of America Bulletin 99, 633–53.2.0.CO;2>CrossRefGoogle Scholar
Robertson, A. H. F. & Dixon, J. E. 1984. Introduction: aspects of the geological evolution of the Eastern Mediterranean. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. and Robertson, A. H. F.), pp. 174. Geological Society of London Special Publication no. 17.Google Scholar
Searle, M. P. & Graham, G. A. 1982. The Oman Exotics: oceanic carbonat build-ups associated with the early stages of continental rifting. Geology 10, 4249.2.0.CO;2>CrossRefGoogle Scholar
Searle, M. P. & Malpas, J. 1980. The structure and metamorphism of rocks beneath the Semail ophiolite of Oman and their significance in ophiolite obduction. Transactions of the Royal Society of Edinburgh (Earth Sciences) 71, 213–28.Google Scholar
Simantov, J. & Bertrand, J. 1987. Major and trace element geochemistry of the central Euboea basaltic rocks (Greece). Possible tectonic implications. Ofioliti 12, 201–18.Google Scholar
Simantov, J., Economou, C. & Bertrand, J. in press. Metamorphic rocks associated with the central Euboea ophiolite (southern Greece). Some new occurrences. In Ophiolites and Oceanic Crust (ed. Moores, E. M. et al. ). Proceedings of the International Symposium, Nicosia 1987.Google Scholar
Simonian, K. O. & Gass, I. G. 1978. Arakapas Fault Belt, Cyprus: a fossil transform belt. Geological Society of America Bulletin 89, 1220–30.2.0.CO;2>CrossRefGoogle Scholar
Smith, A. G. 1977. Othris, Pindos and Vourinos ophiolites and the Pelagonian Zone. Proceedings of the 6th Colloquium of Aegean Geology, Athens, 1977, pp. 13691374.Google Scholar
Smith, A. G., Hynes, A. J., Menzies, M., Nisbet, E. G., Price, I., Welland, M. J. & Ferriére, J. 1975. The stratigraphy of the Othris Mountains, eastern central Greece: a deformed continental sequence. Eclogae Geologicae Helveticae 68, 463–81.Google Scholar
Spray, J. G., Bebien, J., Rex, D. C. & Roddick, J. C. 1984. Age constraints on the igneous and metamorphic evolution of the Hellenic-Dinaric ophiolite. In The Geological Evolution of the Eastern Mediterranean (eds J. E., and Robertson, A. H. F.), 619–27. Geological Society of London Special Publication no. 17.Google Scholar
Spray, J. G. & Roddick, J. C. 1980. Petrology and 40Ar/39Ar geochronology of some Hellenic sub-ophiolite metamorphic rocks. Contributions to Mineralogy and Petrology 72, 4355.CrossRefGoogle Scholar
Swarbrick, R. E. & Robertson, A. H. F. 1980. Revised stratigraphy of the Mesozoic rocks of Southern Cyprus. Geological Magazine 117, 547–63.CrossRefGoogle Scholar
Waldron, J. W. F. 1984. Structural history of the Antalya Complex in the ‘Isparta angle’, Southwest Turkey. In The Geolological Evolution of the Eastern Mediterranean (eds Dixon, J. E. and Robertson, A. H. F.), pp. 273–87. Geological Society of London Special Publication no. 17.Google Scholar
Watts, K. F. & Garrison, R. E. 1986. Sumeini Group, Oman – evolution of a Mesozoic carbonate platform on a South Tethyan continental margin. Sedimentary Geology 48, 107–68.CrossRefGoogle Scholar