Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T21:19:29.837Z Has data issue: false hasContentIssue false

Organic geochemistry, petrology and palynofacies of Middle Devonian lacustrine flagstones in the Orcadian Basin, Scotland: depositional environment, thermal history and petroleum generation potential

Published online by Cambridge University Press:  09 November 2016

ASSAD GHAZWANI
Affiliation:
Institute of Geology and Geochemistry of Petroleum and Coal, Energy and Mineral Resources Group (EMR), RWTH Aachen University, D-52062 Aachen, Germany
RALF LITTKE*
Affiliation:
Institute of Geology and Geochemistry of Petroleum and Coal, Energy and Mineral Resources Group (EMR), RWTH Aachen University, D-52062 Aachen, Germany
VICTORIA SACHSE
Affiliation:
Institute of Geology and Geochemistry of Petroleum and Coal, Energy and Mineral Resources Group (EMR), RWTH Aachen University, D-52062 Aachen, Germany
REINHARD FINK
Affiliation:
Institute of Geology and Geochemistry of Petroleum and Coal, Energy and Mineral Resources Group (EMR), RWTH Aachen University, D-52062 Aachen, Germany
NICOLAJ MAHLSTEDT
Affiliation:
German Research Centre for Geosciences (GFZ), Telegrafenberg, D-14473 Potsdam, Germany
CHRISTOPH HARTKOPF-FRÖDER
Affiliation:
Geological Survey North Rhine-Westphalia, De-Greiff-Str. 195, D-47803 Krefeld, Germany
*
Author for correspondence: [email protected]

Abstract

During Middle Devonian time a thick succession of organic-rich, mainly lacustrine flagstones developed within the Orcadian Basin. These petroleum source rocks crop out in northern Scotland. Nineteen samples were studied using organic petrology, palynology and organic geochemistry in order to characterize kerogen type, depositional environment, thermal maturity and petroleum generation potential. Corg, carbonate and sulphur content as well as hydrogen index (HI) values are quite variable (e.g. HI from 79 to 744 mg HC/g Corg). Based on biomarker data, organic material mainly originates from aquatic organic matter deposited under lacustrine conditions with oxygen-depleted, but not permanently anoxic, bottom waters. Petrography reveals small quantities of vitrinite particles, indicating minor input of terrestrial material. This is supported by biomarker data and the palynofacies, which is characterized by a high amount of oil-prone amorphous organic matter (AOM) and generally few miospores. Maturity of the succession studied in Caithness and Orkney is between immature and oil mature. One-dimensional basin modelling shows that a significant remaining hydrocarbon generation potential exists within the Middle Devonian succession. In contrast to the low hydrocarbon generation in the onshore area, offshore oil generation was significant, especially after deposition of thick Upper Jurassic – Upper Cretaceous sediments. At the end of Cretaceous time, hydrocarbon generation ceased due to uplift. The contribution to known oil fields from the Devonian flagstones is a realistic scenario, including a contribution to the Beatrice oil field in the south of the modelled area.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P. A. & Allen, J. R. 2005. Basin Analysis: Principles and Applications, second edition. Cambridge, London: Wiley-Blackwell, 560 pp.Google Scholar
Amijaya, H. & Littke, R. 2006. Properties of thermally metamorphosed coal from Tanjug Enim area, South Sumatra Basin, Indonesia with special reference to the coalification path of macerals. International Journal of Coal Geology 66, 271–95.CrossRefGoogle Scholar
Andrews, S. D. & Trewin, N. H. 2014. Palaeoenvironmental significance of lacustrine stromatolite forms from the Middle Old Red Sandstone of the Orcadian Basin. Geological Magazine 151 (3), 414–29.Google Scholar
Aquino Neto, F. R., Trendel, J. M., Restle, A., Connan, J. & Albrecht, P. 1983. Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums. In Advances in Organic Geochemistry (ed. Bjørøy, M.), pp. 659–67. Chichester: Wiley.Google Scholar
Astin, T. R. 1985. The palaeogeography of the Middle Devonian Lower Eday Sandstone, Orkney. Scottish Journal of Geology 21, 353–75.CrossRefGoogle Scholar
Astin, T. R. 1990. The Devonian lacustrine sediments of Orkney, Scotland; implications for climate cyclicity, basin structure and maturation history. Journal of the Geological Society 147, 141–51.Google Scholar
Barker, C. E. & Pawlewicz, M. J. 1986. The correlation of vitrinite reflectance with maximum temperature in humic organic matter. In Paleogeothermics (eds Buntebarth, G. & Stegena, L.), pp. 7993. Springer, Berlin, Lecture Notes in Earth Sciences no. 5.Google Scholar
Baron, M., Parnell, J., Mark, D., Carr, A., Przyjalgowski, M. & Feely, M. 2008. Evolution of hydrocarbon migration style in a fractured reservoir deduced from fluid inclusion data, Clair Field, west of Shetland, UK. Marine and Petroleum Geology 25, 153–72.CrossRefGoogle Scholar
Beadle, L. C. 1981. The Inland Waters of Tropical Africa. 2nd ed. London: Longman, 462 pp.Google Scholar
Berner, R. A. 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta 48, 605–15.Google Scholar
Berner, R. A. & Raiswell, R. 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta 47, 855–62.CrossRefGoogle Scholar
Blanc, P. & Connan, J. 1992. Origin and occurrence of 25-norhopanes: a statistical study. Organic Geochemistry 18, 813–28.Google Scholar
Bluck, B. J. 1980. Evolution of a strike-slip fault-controlled basin, Upper Old Red Sandstone, Scotland. In Sedimentation in Oblique-Slip Mobile Zones (eds Ballance, P. F. & Reading, H. G.), pp. 6378. Blackwell, Oxford, International Association of Sedimentologists, Special Publication no. 4.Google Scholar
Bray, E. E. & Evans, E. D. 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta 22, 215.Google Scholar
British Geological Survey . 2005. Dounreay (Scotland) parts of Sheets NC96, ND06 and ND07. Bedrock. 1:25 000 Geology Series. British Geological Survey, Keyworth.Google Scholar
British Geological Survey . 2014. Scotland, Bedrock Geology. Geoindex http://mapapps2.bgs.ac.uk/geoindex/home.html (accessed 8 October 2016).Google Scholar
Budzinski, H., Garrigues, P., Connan, J., Devillers, J., Domine, D., Radke, M. & Oudin, J. L. 1995. Alkylated phenanthrene distributions as maturity and origin indicators in crude oils and rock extracts. Geochimica et Cosmochimica Acta 59, 2043–56.CrossRefGoogle Scholar
Burnham, A. K., Braun, R. L., Gregg, H. R. & Samoun, A. M. 1987. Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Energy & Fuels 1, 452–8.Google Scholar
Chauvet, A. & Séranne, M. 1994. Extension-parallel folding in the Scandinavian Caledonides: implications for late-orogenic processes. Tectonophysics 238, 3154.Google Scholar
Clark, J. P. & Philp, R. P. 1989. Geochemical characterization of evaporite and carbonate depositional environments and correlation of associated crude oils in the Black Creek basin, Alberta. Bulletin of Canadian Petroleum Geology 37, 401–16.Google Scholar
Clarke, P. & Parnell, J. 1999. Facies analysis of a back-tilted lacustrine basin in a strike-slip zone, Lower Devonian, Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology 151, 167–90.Google Scholar
Connan, J., Bouroullec, J., Dessort, D. & Albrecht, P. 1986. The microbial input in carbonate-anhydrite facies of sabkha palaeoenvironment from Guatemala: a molecular approach. Organic Geochemistry 10, 2950.Google Scholar
Connan, J. & Dessort, D. 1987. Novel family of hexacyclic hopanoid alkanes (C32–C35) occurring in sediments and oils from anoxic paleoenvironments. Organic Geochemistry 11, 103–13.CrossRefGoogle Scholar
Coward, M. P. & Enfield, M. A. 1987. The structure of the West Orkney and adjacent basins. In Petroleum Geology of Northwest Europe: Proceedings of the 3rd Conference (eds Brooks, J. & Glennie, K. W.), pp. 687–96. London: Graham & Trotman.Google Scholar
Cranwell, P. A. 1977. Organic geochemistry of Cam Loch (Sutherland) sediments. Chemical Geology 20, 205–21.Google Scholar
Dean, W. E. & Arthur, M. A. 1989. Iron-sulfur-carbon relationships in organic-carbon-rich sequences, I. Cretaceous Western Interior Seaway. American Journal of Science 289, 708–43.CrossRefGoogle Scholar
Dessort, D., Connan, J., Derenne, S. & Largeau, C. 1997. Comparative studies of the kinetic parameters of various algaenans and kerogens via open-system pyrolysis. Organic Geochemistry 26, 705–20.Google Scholar
Didyk, B. M., Simoneit, B. R. T., Brassell, S. C. & Eglinton, G. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272, 216–22.Google Scholar
Donovan, R. N. 1975. Devonian lacustrine limestones at the margin of the Orcadian Basin, Scotland. Journal of the Geological Society 131, 489510.Google Scholar
Donovan, R. N. 1980. Lacustrine cycles, fish ecology and stratigraphic zonation in the Middle Devonian of Caithness. Scottish Journal of Geology 16, 3550.Google Scholar
Donovan, R. N., Foster, R. J. & Westoll, T. S. 1974. A stratigraphical revision of the Old Red Sandstone of north-eastern Caithness. Transactions of the Royal Society of Edinburgh 69, 167201.Google Scholar
Downie, R. A. 1998. Devonian. In Petroleum Geology of the North Sea. Basic Concepts and Recent Advances (ed. Glennie, K. W.), pp. 85103. Oxford: Blackwell Science.Google Scholar
Duncan, W. I. & Buxton, N. W. K. 1995. New evidence for evaporitic Middle Devonian lacustrine sediments with hydrocarbon source potential on the East Shetland Platform, North Sea. Journal of the Geological Society of London, 152, 251–8.CrossRefGoogle Scholar
Duncan, A. D. & Hamilton, R. F. M. 1988. Palaeolimnology and organic geochemistry of the Middle Devonian in the Orcadian Basin. In Lacustrine Petroleum Source Rocks (eds Fleet, A. J., Kelts, K. & Talbot, M. R.), pp. 173201. Geological Society of London, Special Publication no. 40.Google Scholar
Enfield, M. A. & Coward, M. P. 1987. The structure of the West Orkney Basin, northern Scotland. Journal of the Geological Society 144, 871–84.Google Scholar
Espitalié, J., Madec, M., Tissot, B. P., Mennig, J. J. & Leplat, P. 1977. Source rock characterization method for petroleum exploration. Proceedings of the 1977 Offshore Technology Conference, 2–5 May, Houston, Texas. Volume 3, 439–43.Google Scholar
Espitalié, J., Ungerer, P., Irwin, I. & Marquis, F. 1988. Primary cracking of kerogens. Experimenting and modelling C1, C2–C5, C6–C15 and C15+ classes of hydrocarbons formed. Organic Geochemistry 13, 893–9.Google Scholar
Evans, D., Graham, C., Armour, A. & Bathurst, P. (eds) 2003. The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea. London: Geological Society, 389 pp.Google Scholar
Fuhrmann, A., Horsfield, B., Lòpez, J. F., Hu, L. & Zhang, Z. 2004. Organic facies, depositional environment and petroleum generating characteristics of the lacustrine Shahejie Formation, ES4 Member, Western Depression, Liaohe Basin (NE China). Journal of Petroleum Geology 27, 2746.Google Scholar
Green, P. F., Duddy, I. R. & Bray, R. J. 1995. Applications of thermal history reconstruction in inverted basins. In Basin Inversion (eds Buchanan, J. G. & Buchanan, P. G.), pp. 149–65. Geological Society of London, Special Publication no. 88.Google Scholar
Hall, P. B. & Douglas, A. G. 1983. The distribution of cyclic alkanes in two lacustrine deposits. In Advances in Organic Geochemistry (ed. Bjørøy, M.), pp. 575–81. Chichester: Wiley.Google Scholar
Hamilton, R. F. M. & Trewin, N. H. 1985. The Petroleum Geology of the Orcadian Basin. Petroleum Exploration Society of Great Britain (PESGB), London, Field Guide.Google Scholar
Hantschel, T. & Kauerauf, A. I. 2009. Fundamentals of Basin and Petroleum Systems Modeling. Berlin: Springer, 492 pp.Google Scholar
Hillier, S. & Marshall, J. E. A. 1992. Organic maturation, thermal history and hydrocarbon generation in the Orcadian Basin, Scotland. Journal of the Geological Society 149, 491502.Google Scholar
Horsfield, B., Curry, D. J., Bohacs, K., Littke, R., Rullkötter, J., Schenk, H. J., Radke, M., Schaefer, R. G., Carroll, A. R., Isaksen, G. & Witte, E. G. 1994. Organic geochemistry of freshwater and alkaline lacustrine sediments in the Green River Formation of the Washakie Basin, Wyoming, U.S.A. Organic Geochemistry 22, 415–40.Google Scholar
Huang, W. Y. & Meinschein, W. G. 1978. Sterols in sediments from Baffin Bay, Texas. Geochimica et Cosmochimica Acta 42, 1391–6.Google Scholar
Huang, W. Y. & Meinschein, W. G. 1979. Sterols as ecological indicators. Geochimica et Cosmochimica Acta 43, 739–45.Google Scholar
Hughes, W. B., Holba, A. G. & Dzou, L. I. P. 1995. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochimica et Cosmochimica Acta 59, 3581–98.CrossRefGoogle Scholar
Irwin, H. & Meyer, T. 1990. Lacustrine organic facies. A biomarker study using multivariate statistical analysis. Organic Geochemistry 16, 197210.Google Scholar
Janaway, T. M. & Parnell, J. 1989. Carbonate production within the Orcadian Basin, northern Scotland: a petrographic and geochemical study. Palaeogeography, Palaeoclimatology, Palaeoecology 70, 89105.Google Scholar
Jasper, K., Krooss, B. M., Flajs, G., Hartkopf-Fröder, C. & Littke, R. 2009. Characteristics of type III kerogen in coal-bearing strata from the Pennsylvanian (Upper Carboniferous) in the Ruhr Basin, Western Germany: Comparison of coals, dispersed organic matter, kerogen concentrates and coal-mineral mixtures. International Journal of Coal Geology 80, 119.Google Scholar
Jiang, Z. S. & Fowler, M. G. 1986. Carotenoid-derived alkanes in oils from northwestern China. Organic Geochemistry 10, 831–9.CrossRefGoogle Scholar
Kelts, K. 1988. Environments of deposition of lacustrine petroleum source rocks: an introduction. In Lacustrine Petroleum Source Rocks (eds Fleet, A. J., Kelts, K. & Talbot, M. R.), pp. 326. Geological Society of London, Special Publication no. 40.Google Scholar
Killops, S. D. & Killops, V. J. 2005. An Introduction to Organic Geochemistry. Malden: Blackwell, 393 pp.Google Scholar
Koopmans, M. P., de Leeuw, J. W. & Sinninghe Damsté, J. S. 1997. Novel cyclised and aromatised diagenetic products of β-carotene in the Green River Shale. Organic Geochemistry 26, 451–66.Google Scholar
Littke, R., Klussmann, U., Krooß, B. & Leythaeuser, D. 1991. Quantifications of calcite- pyrite-, and organic matter-loss due to weathering of Toarcian black shales and effects on kerogen and bitumen charachteristics. Geochimica et Cosmochimica Acta 55, 3369–78.Google Scholar
Littke, R. & Sachsenhofer, R. F. 1994. Organic petrology of deep sea sediments: a compilation of results from the Ocean Drilling Program and the Deep Sea Drilling Project. Energy & Fuels 8, 1498–512.Google Scholar
Lückge, A., Ercegovac, M., Strauss, H. & Littke, R. 1999. Early diagenetic alteration of organic matter by sulfate reduction in Quaternary sediments from the northeastern Arabian Sea. Marine Geology 158, 113.Google Scholar
Marshall, J. E. A. 1996. Rhabdosporites langii, Geminospora lemurata and Contagisporites optivus: an origin for heterospory within the Progymnosperms. Review of Palaeobotany and Palynology 93, 159–89.Google Scholar
Marshall, J. E. A. 1998. The recognition of multiple hydrocarbon generation episodes: an example from Devonian lacustrine sedimentary rocks in the Inner Moray Firth, Scotland. Journal of the Geological Society 155, 335–52.CrossRefGoogle Scholar
Marshall, J. E. A., Astin, T. R., Brown, J. F., Mark-Kurik, E. & Lazauskiene, J. 2007. Recognizing the Kačák Event in the Devonian terrestrial environment and its implications for understanding land–sea interactions. In Devonian Events and Correlations (eds Becker, R. T. & Kirchgasser, W. T.), pp. 133–55. Geological Society of London, Special Publication no. 278.Google Scholar
Marshall, J. E. A., Brown, J. F. & Astin, T. R. 2011. Recognising the Taghanic Crisis in the Devonian terrestrial environment and its implications for understanding land–sea interactions. Palaeogeography, Palaeoclimatology, Palaeoecology 304, 165–83.Google Scholar
Marshall, J. E. A., Brown, J. F. & Hindmarsh, S. 1985. Hydrocarbon source rock potential of the Devonian rocks of the Orcadian Basin. Scottish Journal of Geology 21, 301–20.Google Scholar
Marshall, J. E. A. & Hewett, T. 2003. Devonian . In The Millenium Atlas: Petroleum Geology of the Central and Northern North Sea (eds Evans, D., Graham, C., Armour, A. & Bathurst, P.), pp. 6481. London: Geological Society.Google Scholar
Marshall, J. E. A. & Yule, B. L. 1999. Spore colour measurement. In Fossil Plants and Spores: Modern Techniques (eds Jones, T. P. & Rowe, N. P.), pp. 165–8. London: Geological Society.Google Scholar
McClay, K. R., Norton, M. G., Coney, P. & Davis, G. H. 1986. Collapse of the Caledonian orogen and the Old Red Sandstone. Nature 323, 141–9.Google Scholar
Moldowan, J. M., Seifert, W. K. & Gallegos, E. J. 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin 69, 1255–68.Google Scholar
Moretti, I. & Deacon, K. 1995. Subsidence, maturation and migration history of the Tampen Spur area. Marine and Petroleum Geology 12, 345–75.Google Scholar
Mukhopadhyay, P. K., Wade, J. A. & Kruge, M. A. 1995. Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil-source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada. Organic Geochemistry 22, 85104.Google Scholar
Mykura, W. 1976. British Regional Geology: Orkney and Shetland. Edinburgh: Her Majesty's Stationary Office, 149 pp.Google Scholar
Newman, M. J. & Den Blaauwen, J. L. 2008. New information on the enigmatic Devonian vertebrate Palaeospondylus gunni . Scottish Journal of Geology 44, 8991.Google Scholar
Palacas, J. G., Anders, D. E. & King, J. D. 1984. South Florida Basin – A prime example of carbonate source rocks of petroleum. In: Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks (ed. Palacas, J. G.), pp. 7196. American Association of Petroleum Geologists, Studies in Geology no. 18.Google Scholar
Parnell, J. 1983. The distribution of hydrocarbon minerals in the Orcadian Basin. Scottish Journal of Geology 19, 205–13.Google Scholar
Parnell, J. 1985. Hydrocarbon source rocks, reservoir rocks and migration in the Orcadian Basin. Scottish Journal of Geology 21, 321–35.Google Scholar
Parnell, J. 1988. Significance of lacustrine cherts for the environment of source-rock deposition in the Orcadian Basin, Scotland. In Lacustrine Petroleum Source Rocks (eds Fleet, A. J., Kelts, K. & Talbot, M. R.), pp. 205–17. Geological Society of London, Special Publication no. 40.Google Scholar
Parnell, J., Carey, P. & Monson, B. 1998. Timing and temperature of decollement on hydrocarbon source rock beds in cyclic lacustrine successions. Palaeogeography, Palaeoclimatology, Palaeoecology 140, 121–34.Google Scholar
Pearson, D. L. 1990. Pollen/spore color “standard”. 2nd Printing of Version #2. Bartlesville, Oklahoma: Phillips Petroleum Company.Google Scholar
Peters, K. E. 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin 70, 318–29.Google Scholar
Peters, K. E. & Moldowan, J. M. 1991. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Organic Geochemistry 17, 4761.Google Scholar
Peters, K. E., Moldowan, J. M., Driscole, A. R. & Demaison, G. J. 1989. Origin of Beatrice oil by co-sourcing from Devonian and Middle Jurassic source rocks, Inner Moray Firth, United Kingdom. AAPG Bulletin 73, 454–71.Google Scholar
Peters, K. E., Walters, C. C. & Moldowan, J. M. 2005. The Biomarker Guide. Biomarkers and Isotopes in Petroleum Exploration and Earth History, Volume 2. Cambridge: Cambridge University Press, 1155 pp.Google Scholar
Philp, R. P. & Gilbert, T. D. 1986. Biomarker distributions in Australian oils predominantly derived from terrigenous source material. Organic Geochemistry 10, 7384.Google Scholar
Rayner, D. H. 1963. The Achanarras Limestone of the Middle Old Red Sandstone, Caithness, Scotland. Proceedings of the Yorkshire Geological Society 34, 117–38.Google Scholar
Reynolds, J. G. & Burnham, A. K. 1995. Comparison of kinetic analysis of source rocks and kerogen concentrates. Organic Geochemistry 23, 11–9.Google Scholar
Rogers, D. A., Marshall, J. E. A. & Astin, T. R. 1989. Devonian and later movements on the Great Glen fault system, Scotland. Journal of the Geological Society 146, 369–72.Google Scholar
Rullkötter, J. & Marzi, R. 1988. Natural and artificial maturation of biological markers in a Toarcian shale from northern Germany. Organic Geochemistry 13, 639–45.Google Scholar
Sachse, V. F., Littke, R., Jabour, H., Schümann, T. & Kluth, O. 2012. Late Cretaceous (Late Turonian, Coniacian and Santonian) petroleum source rocks as part of an OAE, Tarfaya Basin, Morocco. Marine and Petroleum Geology 29, 3549.CrossRefGoogle Scholar
Scalan, R. S. & Smith, J. E. 1970. An improved measure of the odd-even predominance in the normal alkanes of sediment extracts and petroleum. Geochimica et Cosmochimica Acta 34, 611–20.Google Scholar
Schenk, H. J. & Dieckmann, V. 2004. Prediction of petroleum formation: the influence of laboratory heating rates on kinetic parameters and geological extrapolations. Marine and Petroleum Geology 21, 7995.Google Scholar
Schenk, H. J., Di Primio, R. & Horsfield, B. 1997. The conversion of oil into gas in petroleum reservoirs. Part 1: comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis. Organic Geochemistry 26, 467–81.Google Scholar
Seifert, W. K. & Moldowan, J. M. 1978. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochimica et Cosmochimica Acta 42, 7795.Google Scholar
Séranne, M. 1992. Devonian extensional tectonics versus Carboniferous inversion in the northern Orcadian Basin. Journal of the Geological Society 149, 2737.CrossRefGoogle Scholar
Serruya, C. & Pollingher, U. 1983. Lakes of the Warm Belt. New York: Cambridge University Press, 570 pp.Google Scholar
Shanmugam, G. 1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. AAPG Bulletin 69, 1241–54.Google Scholar
Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., Köster, J., Schouten, S., Hayes, J. M. & de Leeuw, J. W. 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta 59, 1895–900.Google Scholar
Stephenson, M. H., Leng, M. J., Michie, U. & Vane, C. H. 2006. Palaeolimnology of Palaeozoic lakes, focussing on a single lake cycle in the Middle Devonian of the Orcadian Basin, Scotland. Earth-Science Reviews 75, 177–97.Google Scholar
Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke, R. & Robert, P. 1998. Organic Petrology. Stuttgart: Borntraeger, 704 pp.Google Scholar
Tegelaar, E. W. & Noble, R. A. 1994. Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis-gas chromatography. Organic Geochemistry 22, 543–74.Google Scholar
Thomson, K., Underhill, J. R., Green, P. F., Bray, R. J. & Gibson, H. J. 1999. Evidence from apatite fission track analysis for the post-Devonian burial and exhumation history of the northern Highlands, Scotland. Marine and Petroleum Geology 16, 2739.CrossRefGoogle Scholar
Tissot, B. P. & Welte, D. H. 1984. Petroleum Formation and Occurrence. 2nd ed. Berlin: Springer-Verlag, 699 pp.Google Scholar
Trewin, N. H. 1986. Palaeoecology and sedimentology of the Achanarras fish bed of the Middle Old Red Sandstone, Scotland. Transactions of the Royal Society of Edinburgh, Earth Science 77, 2146.Google Scholar
Trewin, N. H. 1989. The petroleum potential of the Old Red Sandstone of northern Scotland. Scottish Journal of Geology 25, 201–25.Google Scholar
Trewin, N. H. & Thirlwall, M. F. 2002. Old Red Sandstone. In The Geology of Scotland, 4th ed. (ed. Trewin, N. H.), pp. 213–50. London: Geological Society.Google Scholar
Tyson, R. V. 1995. Sedimentary Organic Matter. London: Chapman & Hall, 615 pp.Google Scholar
Tyson, R. V. & Pearson, T. H. 1991. Modern and ancient continental shelf anoxia: an overview. In Modern and Ancient Continental Shelf Anoxia (eds Tyson, R. V. & Pearson, T. H.), pp. 124. Geological Society of London, Special Publication no. 58.Google Scholar
Volkman, J. K., Alexander, R., Kagi, R. I. & Woodhouse, G. W. 1983. Demethylated hopanes in crude oils and their applications in petroleum geochemistry. Geochimica et Cosmochimica Acta 47, 785–94.Google Scholar
Wang, P. R. 1993. Mass Chromatogram Atlas of Biomarkers (in Chinese). Beijing: Petroleum Industry Press, 2021 pp.Google Scholar
Wei, H., Bjørøy, M. & Roaldset, E. 1994. Multicomponent generation kinetics of source rocks and coals from Norwegian North Sea. In 6th Conference of the European Association of Petroleum Geoscientists and Engineers, Vienna. Extended Abstract, 532 pp.Google Scholar
Weiss, H. M., Wilhelms, A., Mills, N., Scotchmer, J., Hall, P. B., Lind, K. & Brekke, T. 2000. NIGOGA - The Norwegian Industry Guide to Organic Geochemical Analyses. Edition 4.0 Published by Norsk Hydro, Statoil, Geolab Nor, SINTEF Petroleum Research and the Norwegian Petroleum Directorate. Available at http://www.npd.no/global/norsk/5-regelverk/tematiske-veiledninger/geochemical-analysis_e.pdf (accessed 8 October 2016).Google Scholar
Welte, D. H., Horsfield, B. & Baker, D. R. (eds) 1997. Petroleum and Basin Evolution. Berlin: Springer, 535 pp.Google Scholar
Welte, D. H. & Yükler, M. A. 1981. Petroleum origin and accumulation in basin evolution – a quantitative model. AAPG Bulletin 65, 1387–96.Google Scholar
Zhang, S. & Huang, H. 2005. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China. Part 1. Oil family classification. Organic Geochemistry 36, 1204–14.Google Scholar