Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T04:31:10.028Z Has data issue: false hasContentIssue false

O–H–Sr–Nd isotope constraints on the origin of the Famatinian magmatic arc, NW Argentina

Published online by Cambridge University Press:  04 May 2020

P. Alasino*
Affiliation:
Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja–Universidad Nacional de La Rioja–Servicio Geológico Minero Argentino–Universidad Nacional de Catamarca–Consejo Nacional de Investigaciones Científicas y Técnicas, Entre Ríos y Mendoza, 5301, Anillaco, La Rioja, Argentina Instituto de Geología y Recursos Naturales (INGeReN), Centro de Investigación e Innovación Tecnológica–Universidad Nacional de La Rioja, Avenida Gobernador Vernet y Apóstol Felipe, 5300, La Rioja, Argentina
C. Casquet
Affiliation:
Departamento de Mineralogía y Petrología, Universidad Complutense & Instituto de Geociencias, Consejo Superior de Investigaciones Científicas–Universidad Complutense de Madrid, 28040 Madrid, Spain
C. Galindo
Affiliation:
Departamento de Mineralogía y Petrología, Universidad Complutense & Instituto de Geociencias, Consejo Superior de Investigaciones Científicas–Universidad Complutense de Madrid, 28040 Madrid, Spain
R. Pankhurst
Affiliation:
Visiting Research Associate, British Geological Survey, Keyworth, NottinghamNG12 5GG, UK
C. Rapela
Affiliation:
Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de La Plata, Calle 1 No. 644, 1900, La Plata, Argentina
J. Dahlquist
Affiliation:
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Física y Naturales, Córdoba, Argentina Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de Córdoba, Córdoba, Argentina
C. Recio
Affiliation:
Área de Petrología y Geoquímica, Departamento de Geología, Universidad de Salamanca, Plaza de los Caídos, S/N E-37008 Salamanca, Spain
E. Baldo
Affiliation:
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Física y Naturales, Córdoba, Argentina Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de Córdoba, Córdoba, Argentina
M. Larrovere
Affiliation:
Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja–Universidad Nacional de La Rioja–Servicio Geológico Minero Argentino–Universidad Nacional de Catamarca–Consejo Nacional de Investigaciones Científicas y Técnicas, Entre Ríos y Mendoza, 5301, Anillaco, La Rioja, Argentina Instituto de Geología y Recursos Naturales (INGeReN), Centro de Investigación e Innovación Tecnológica–Universidad Nacional de La Rioja, Avenida Gobernador Vernet y Apóstol Felipe, 5300, La Rioja, Argentina
C. Ramacciotti
Affiliation:
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Física y Naturales, Córdoba, Argentina Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de Córdoba, Córdoba, Argentina
*
Author for correspondence: P. Alasino, Email: [email protected]

Abstract

We report a study of whole-rock O–H–Sr–Nd isotopes of Ordovician igneous and metamorphic rocks exposed at different crustal palaeodepths along c. 750 km in the Sierras Pampeanas, NW Argentina. The isotope compositions preserved in the intermediate rocks (mostly tonalite) (average δ18O = +8.7 ± 0.5‰, δD = −73 ± 14‰, 87Sr/86Srt = 0.7088 ± 0.0001 and εNdt = −4.5 ± 0.6) show no major difference from those of most of the mafic rocks (average δ18O = +8 ± 0.8‰, δD = −84 ± 18‰, 87Sr/86Srt = 0.7082 ± 0.0016 and εNdt = −4 ± 1.1), suggesting that most of their magmas acquired their crustal characteristics in the mantle. The estimate of assimilation of crustal material (δ18O = +12.2 ± 1.7‰, δD = −89 ± 21‰, 87Sr/86Srt = 0.7146 ± 0.0034 and εNdt = −6.9 ± 0.7) by the tonalite is in most samples within the range 10–20%. Felsic magmas that reached upper crustal levels had isotope values (δ18O = +9.9 ± 1.5‰, δD= −76 ± 5‰, 87Sr/86Srt = 0.7067 ± 0.0010, εNdt = −3.5 ± 1.4) suggesting that they were not derived by fractionation of the contaminated intermediate magmas, but evolved from different magma batches. Some rocks of the arc, both igneous (mostly gabbro and tonalite) and metamorphic, underwent restricted interaction with meteoric fluids. Reported values of δ18O of magmatic zircons from the Famatinian arc rocks (+6 to +9‰) are comparable to our δ18O whole-rock data, indicating that pervasive oxygen isotope exchange in the lower crust was not a major process after zircon crystallization.

Type
Original Article
Copyright
© Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased

References

Alasino, PH, Casquet, C, Larrovere, MA, Pankhurst, RJ, Galindo, C, Dahlquist, JA, Baldo, EG and Rapela, CW (2014) The evolution of a mid-crustal thermal aureole at Cerro Toro, Sierra de Famatina, NW Argentina. Lithos 190/191, 154–72, doi: 10.1016/j.lithos.2013.12.006.CrossRefGoogle Scholar
Alasino, PH, Casquet, C, Pankhurst, RJ, Rapela, CW, Dahlquist, JA, Galindo, C, Larrovere, MA, Recio, C, Paterson, SR, Colombo, F and Baldo, EG (2016) Mafic rocks of the Ordovician Famatinian magmatic arc (NW Argentina): new insights into the mantle contribution. Geological Society of American Bulletin 128, 1105–20, doi: 10.1130/B31417.1.CrossRefGoogle Scholar
Annen, C, Blundy, J and Sparks, R (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology 47, 505–39, doi: 10.1093/petrology/egi084.CrossRefGoogle Scholar
Arth, JG, Barker, F, Peterman, ZE and Friedman, I (1978) Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of southern Finland and its implication for the origin of tonalitic and trondhjemitic magma. Journal of Petrology 19, 289316.CrossRefGoogle Scholar
Bahlburg, H and Hervé, F (1997) Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and Northern Chile. Geological Society of America Bulletin 109, 869–84, doi: 10.1130/0016-7606(1997)109<0869:GEATTO>2.3.CO;2. 2.3.CO;2>CrossRefGoogle Scholar
Bellos, LI, Castro, A, Díaz-Alvarado, J and Toselli, A (2015) Multi-pulse cotectic evolution and in-situ fractionation of calc-alkaline tonalite–granodiorite rocks, Sierra de Velasco batholith, Famatinian belt, Argentina. Gondwana Research 27, 258–80, doi: 10.1016/j.gr.2013.09.019.Google Scholar
Bindeman, IN (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planetary Science Letters 235, 480–96, doi: 10.1016/j.epsl.2005.04.014.CrossRefGoogle Scholar
Bindeman, IN (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Reviews in Mineralogy and Geochemistry 69, 445–78, doi: 10.2138/rmg.2008.69.12.CrossRefGoogle Scholar
Borthwick, J and Harmon, RS (1982) A note regarding ClF3 as an alternative to BrF5 for oxygen isotope analysis. Geochimica et Cosmochimica Acta 46, 1665–68, doi: 10.1016/0016-7037(82)90321-0.CrossRefGoogle Scholar
Casquet, C, Rapela, CW, Pankhurst, RJ, Baldo, E, Galindo, C, Fanning, CM and Dahlquist, J (2012) Fast sediment underplating and essentially coeval juvenile magmatism in the Ordovician margin of Gondwana, Western Sierras Pampeanas, Argentina. Gondwana Research 22, 664–73, doi: 10.1016/j.gr.2012.05.001.CrossRefGoogle Scholar
Castro, A (2014) The off-crust origin of granite batholiths. Geoscience Frontiers 5, 6375, doi: 10.1016/j.gsf.2013.06.006.Google Scholar
Castro, A, Díaz-Alvarado, J and Fernández, C (2012) Fractionation and incipient self-granulitization during deep-crust emplacement of Lower Ordovician Valle Fértil batholith at the Gondwana active margin of South America. Gondwana Research 25, 685706, doi: 10.1016/j.gr.2012.08.011.CrossRefGoogle Scholar
Cawood, PE, Kröner, A, Collins, WJ, Kusky, TM, Mooney, WD and Windley, BF (2009) Accretionary orogens through Earth history. In Earth Accretionary Systems in Space and Time (eds PA Cawood and A Kröner), pp. 136. Geological Society London, Special Publication no. 318, doi: 10.1144/SP318.1. CrossRefGoogle Scholar
Clayton, RN and Mayeda, TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta 27, 4352, doi: 10.1016/0016-7037(63)90071-1. CrossRefGoogle Scholar
Collo, G, Astini, RA, Cawood, PA, Buchan, C and Pimentel, M (2009) U-Pb detrital zircon ages and Sm-Nd isotopic features in low-grade metasedimentary rocks of the Famatina belt: Implications for late Neoproterozoic–early Palaeozoic evolution of the proto-Andean margin of Gondwana. Journal of the Geological Society of London 166, 303–19, doi: 10.1144/0016-76492008-051. CrossRefGoogle Scholar
Cristofolini, EA, Otamendi, JE, Ducea, MN, Pearson, DM, Tibaldi, AM and Baliani, I (2012) Detrital zircon U-Pb ages of metasedimentary rocks from Sierra de Valle Fértil: Entrapment of Middle and Late Cambrian marine successions in the deep roots of the Early Ordovician Famatinian arc. Journal of South American Earth Sciences 37, 7794, doi: 10.1016/j.jsames.2012.02.001. Google Scholar
Dahlquist, JA, Pankhurst, RJ, Gaschnig, RM, Rapela, CW, Casquet, C, Alasino, PH, Galindo, C and Baldo, E (2013) Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors of crustal growth in the Proto-Andean margin of Gondwana. Gondwana Research 23, 1617–30, doi: 10.1016/j.gr.2012.08.013.CrossRefGoogle Scholar
Dahlquist, JA, Pankhurst, RJ, Rapela, CW, Galindo, C, Alasino, P, Fanning, CM, Saavedra, J and Baldo, E (2008) New SHRIMP U-Pb data from the Famatina complex: Constraining Early–Mid-Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina. Geologica Acta 6, 319–33.Google Scholar
Dahlquist, JA, Rapela, CW and Baldo, EG (2005) Cordierite-bearing S-type granitoids in the Sierra de Chepes (Sierras Pampeanas): Petrogenetic implications. Journal of South American Earth Sciences 20, 231–51, doi: 10.1016/j.jsames.2005.05.014. CrossRefGoogle Scholar
Dahlquist, JA, Rapela, CW, Pankhurst, RJ, Fanning, CM, Vervoort, JD, Hart, G, Baldo, EG, Murra, JA, Alasino, P and Colombo, F (2012) Age and magmatic evolution of the Famatinian granitic rocks of Sierra de Ancasti, Sierras Pampeanas, NW Argentina. Journal of South American Earth Sciences 34, 1025.CrossRefGoogle Scholar
Davidson, JP, Horab, JM, Garrison, JM and Dungan, MA (2005) Crustal forensics in arc magmas Journal of Volcanology and Geothermal Research 140, 157–70.CrossRefGoogle Scholar
De Paolo, DJ (1981) Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth Planetary Science Letters 53, 189202, doi: 10.1016/0012-821X(81)90153-9.Google Scholar
De Paolo, DJ, Linn, AM and Schubert, G (1991) The continental crustal age distribution: methods of determining mantle separation ages from Sm–Nd isotopic data and application to the Southwestern United States. Journal of Geophysical Research 96, 2071–88, doi: 10.1029/90JB02219.Google Scholar
Donnelly, T, Waldron, S, Tait, A, Dougans, J and Bearhop, S (2001) Hydrogen isotope analysis of natural abundance and deuterium-enriched waters by reduction over chromium on-line to a dynamic dual inlet isotope-ratio mass spectrometer. Rapid Communications in Mass Spectrometry 15, 12971303, doi: 10.1002/rcm.361.CrossRefGoogle ScholarPubMed
Dorendorf, F, Wiechert, U and Worner, G (2000) Hydrated sub-arc mantle: a source for the Kluchevskoy volcano, Kamchatka/Russia. Earth Planetary Science Letters 175, 6986, doi: 10.1016/S0012-821X(99)00288-5.CrossRefGoogle Scholar
Ducea, MN, Bergantz, GW, Crowley, JL and Otamendi, J (2017) Ultrafast magmatic buildup and diversification to produce continental crust during subduction. Geology 45(3), 235–38, doi: 10.1130/G38726.1.CrossRefGoogle Scholar
Ducea, MN, Otamendi, JE, Bergantz, GW, Jianu, D and Petrescu, L (2015) The origin and petrologic evolution of the Ordovician Famatinian-Puna arc. In Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile (eds DeCelles, PG, Ducea, MN, Carrapa, B and Kapp, PA), pp. 125–38. Geological Society of America, Memoir no. 212, doi: 10.1130/2015.1212(07).Google Scholar
Eiler, JM, McInnes, B, Valley, JW, Graham, CM and Stolper, EM (1998) Oxygen isotope evidence for slab derived fluids in the sub-arc mantle. Nature 393, 777–81, doi: 10.1038/31679.CrossRefGoogle Scholar
Evans, OC and Hanson, GN (1996) Post-kinematic Archean tonalites, trondhjemites, and granodiorites of the S.W. Superior province: derivation through direct mantle melting. In The Tectonic Evolution of Greenstone Belts (eds Ashwal, LD and de Wit, MJ). Oxford: Oxford University Press.Google Scholar
Faure, G (1986) Principles of Isotope Geology, Second Edition. New York: John Wiley & Sons, 589 p.Google Scholar
Gallien, F, Mogessie, A, Bjerg, E, Delpino, S, Castro de Machuca, B, Thöni, M and Klötzli, U (2010) Timing and rate of granulite facies metamorphism and cooling from multi-mineral chronology on migmatitic gneisses, Sierras de La Huerta and Valle Fértil NW Argentina. Lithos 114, 229–52, doi: 10.1016/j.lithos.2009.08.011.CrossRefGoogle Scholar
Gallien, F, Mogessie, A, Hauzenberger, CA, Bjerg, E, Delpino, S and Castro de Machuca, B (2012) On the origin of multi-layer coronas between olivine and plagioclase at the gabbro-granulite transition, Valle Fértil-La Huerta Ranges, San Juan Province, Argentina. Journal of Metamorphic Geology 30, 281302, doi: 10.1111/j.1525-1314.2011.00967.x.CrossRefGoogle Scholar
Gill, JB (1981) Orogenic Andesites and Plate Tectonics. New York: Springer-Verlag, 390 p. CrossRefGoogle Scholar
Godfrey, JD (1962) The deuterium content of hydrous minerals from the East Central Sierra Nevada and Yosemite National Park. Geochimica et Cosmochimica Acta 26, 1215–45.CrossRefGoogle Scholar
Grosse, P, Bellos, LI, de los Hoyos, CR, Larrovere, MA, Rossi, JN and Toselli, AJ (2011) Across-arc variation of the Famatinian magmatic arc (NW Argentina) exemplified by I-, S- and transitional I/S-type Early Ordovician granitoids of the Sierra de Velasco. Journal of South American Earth Sciences 32, 110–26, doi: 10.1016/j.jsames.2011.03.014.CrossRefGoogle Scholar
Grove, TL, Elkins-Tanton, LT, Parman, SW, Chatterjee, N, Müntener, O and Gaetani, GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contributions to Mineralogy and Petrology 145, 515–33, doi: 10.1007/s00410-003-0448-z.CrossRefGoogle Scholar
Grove, TL, Till, CB and Krawczynski, MJ (2012) The role of H2O in subduction zone magmatism. Annual Review of Earth and Planetary Sciences 40, 413–39, doi: 10.1146/annurev-earth-042711-105310.CrossRefGoogle Scholar
Harmon, RS and Hoefs, J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contributions to Mineralogy and Petrology 120, 95114, doi: 10.1007/BF00311010.CrossRefGoogle Scholar
Hildreth, W and Moorbath, S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology 98, 455–89, doi: 10.1007/BF00372365.CrossRefGoogle Scholar
Hoefs, J (2009) Stable Isotope Geochemistry. Berlin: Springer-Verlag, 285 p. Google Scholar
Jagoutz, O and Klein, B (2018) On the importance of crystallization-differentiation for the generation of SiO2-rich melts and the compositional build-up of arc (and continental) crust. American Journal of Science 318, 2963, doi: 10.2475/01.2018.03.Google Scholar
James, DE (1981) The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. Annual Review of Earth and Planetary Sciences 9, 311–44.CrossRefGoogle Scholar
Kempton, PD and Harmon, RS (1992) Oxygen isotope evidence for large-scale hybridization of the lower crust during magmatic underplating. Geochimica et Cosmochimica Acta 56, 971–86.CrossRefGoogle Scholar
Lackey, JS, Valley, JW, Chen, JH and Stockli, DF (2008) Dynamic magma systems, crustal recycling, and alteration in the Central Sierra Nevada Batholith: the oxygen isotope record. Journal of Petrology 49, 1397–426, doi: 10.1093/petrology/egn030.CrossRefGoogle Scholar
Larrovere, MA, de los Hoyos, CR, Willner, AP, Verdecchia, SO, Baldo, EG, Casquet, C, Basei, MA, Hollanda, MH, Rocher, S, Alasino, PH and Moreno, GG (2019) Mid-crustal deformation in a continental margin orogen: structural evolution and timing of the Famatinian Orogeny, NW Argentina. Journal of the Geological Society 177, 233–57, doi: 10.1144/jgs2018-230.Google Scholar
Liu, CZ, Wu, FY, Chung, SL, Li, QL, Sun, WD and Ji, WQ (2014) A ‘hidden’ 18δO enriched reservoir in the sub-arc mantle. Scientific Reports 4, doi: 10.1038/srep04232.Google ScholarPubMed
Moorbath, S (1975) Evolution of Precambrian crust from strontium evidence. Nature 254, 395–98.CrossRefGoogle Scholar
Müntener, O, Kelemen, PB and Grove, TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contributions to Mineralogy and Petrology 141, 643–58, doi: 10.1007/s004100100266.CrossRefGoogle Scholar
Murra, JA and Baldo, EG (2006) Evolución tectonotermal ordovícica del borde occidental del arco magmático Famatiniano: metamorfismo de las rocas máficas y ultramáficas de la Sierra de la Huerta-de Las Imanas (Sierras Pampeanas, Argentina). Revista Geológica de Chile 33, 277–98, doi: 10.4067/S0716-02082006000200004.CrossRefGoogle Scholar
Otamendi, JE, Ducea, MN and Bergantz, GW (2012) Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fértil, Famatinian arc, Argentina. Journal of Petrology 53, 761800, doi: 10.1093/petrology/egr079. CrossRefGoogle Scholar
Otamendi, JE, Ducea, MN, Tibaldi, AM, Bergantz, G, de la Rosa, JD and Vujovich, GI (2009a) Generation of tonalitic and dioritic magmas by coupled partial melting of gabbroic and metasedimentary rocks within the deep crust of the Famatinian magmatic arc, Argentina. Journal of Petrology 50, 841–73, doi: 10.1093/petrology/egp022.CrossRefGoogle Scholar
Otamendi, JE, Vujovich, GI, de la Rosa, JD, Tibaldi, AM, Castro, A, Martino, RD and Pinotti, LP (2009b) Geology and petrology of a deep crustal zone from the Famatinian paleo-arc, Sierras de Valle Fértil and La Huerta, San Juan, Argentina. Journal of South American Earth Sciences 27, 258–79, doi: 10.1016/j.jsames.2008.11.007.CrossRefGoogle Scholar
Pankhurst, RJ, Rapela, CW and Fanning, CM (2000) Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina. Transactions of the Royal Society of Edinburgh Earth Sciences 91, 151–68, doi: 10.1017/S0263593300007343.CrossRefGoogle Scholar
Ramacciotti, CD, Casquet, C, Baldo, EG, Alasino, PH, Galindo, C and Dahlquist, JA (2020) Late Cambrian – Early Ordovician magmatism in the Sierra de Pie de Palo, Sierras Pampeanas (Argentina): implications for the early evolution of the proto-Andean margin of Gondwana. Geological Magazine 157, 321–39, doi: 10.1017/S0016756819000748.CrossRefGoogle Scholar
Rapela, CW, Coira, B, Toselli, A and Saavedra, J (1992) The lower Paleozoic magmatism of southwestern Gondwana and the evolution of famatinian orogen. International Geology Review 34, 1081–142, doi: 10.1080/00206819209465657.CrossRefGoogle Scholar
Rapela, CW, Pankhurst, RJ, Casquet, C, Dahlquist, JA, Fanning, MC, Baldo, EG, Galindo, C, Alasino, PH, Ramacciotti, CD, Verdecchia, SO, Murra, JA and Basei, MAS (2018) A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana. Earth-Science Review 187, 259–85, doi: 10.1016/j.earscirev.2018.10.006.CrossRefGoogle Scholar
Rapela, CW, Verdecchia, SO, Casquet, C, Pankhurst, RJ, Baldo, EG, Galindo, C, Murra, JA, Dahlquist, JA and Fanning, CM (2016) Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications. Gondwana Research 32, 193201, doi: 10.1016/j.gr.2015.02.010.CrossRefGoogle Scholar
Rapp, RP, Watson, EB and Miller, CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research 51, 125, doi: 10.1016/0301-9268(91)90092-O.CrossRefGoogle Scholar
Rogers, G and Hawkesworth, CJ (1989) A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth Planetary Science Letters 91, 271–85, doi: 10.1016/0012-821X(89)90003-4.CrossRefGoogle Scholar
Rossi, JN and Toselli, AJ (2005) Paleozoic ages and intrusivity of granitoids in the Velasco Range, Argentina. In Proceedings of 19° Colloquium on Latin American Geosciences. Terra Nostra 05/1, 103104.Google Scholar
Saavedra, J, Pellitero, E, Rossi, J and Toselli, A (1992) Magmatic evolution of the Cerro Toro granite, a complex Ordovician pluton of northwestern Argentina. Journal of South American Earth Sciences 5, 2132, doi: 10.1016/0895-9811(92)90057-6.CrossRefGoogle Scholar
Saunders, AD, Norry, MJ and Tarney, NJ (1988) Origin of MORB and chemically-depleted mantle reservoirs: Trace element constraints. Journal of Petrology, Special Vol. 1, 415–45, doi: 10.1093/petrology/Special_Volume.1.415.CrossRefGoogle Scholar
Sharp, ZD (1990) A laser-based microanalytical method for in situ determination of oxygen isotope ratios of silicates and oxides. Geochimica et Cosmochimica Acta 54, 1353–57, doi: 10.1016/0016-7037(90)90160-M.CrossRefGoogle Scholar
Stracke, A (2012) Earth’s heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology 330–331, 274–99, doi: 10.1016/j.chemgeo.2012.08.007.CrossRefGoogle Scholar
Tibaldi, AM, Otamendi, JE, Cristofolini, EA, Baliani, I, Walker, BA and Bergantz, GW (2013) Reconstruction of the Early Ordovician Famatinian arc through thermobarometry in lower and middle crustal exposures, Sierra de Valle Fértil, Argentina. Tectonophysics 589, 151–66, doi: 10.1016/j.tecto.2012.12.032.CrossRefGoogle Scholar
Toselli, AJ (1992) El Magmatismo del Noroeste Argentino: Reseña Sistemática e Interpretación. Instituto Superior de Correlación Geológica, Tucumán, Serie Correlación Geológica 8, 243 p.Google Scholar
Walker, BA Jr, Bergantz, GW, Otamendi, JE, Ducea, MN and Cristofolini, EA (2015) A MASH zone revealed: the mafic complex of the sierra Valle Fértil. Journal of Petrology 56, 1863–96, doi: 10.1093/petrology/egv057.Google Scholar
Weinberg, RF, Becchio, R, Farias, P, Suzaño, N and Sola, A (2018) Early Paleozoic accretionary orogenies in NW Argentina: growth of West Gondwana. Earth-Science Review 187, 219–47. doi: org/10.1016/j.earscirev.2018.10.001.CrossRefGoogle Scholar
Supplementary material: File

Alasino et al. Supplementary Materials

Alasino et al. Supplementary Materials

Download Alasino et al. Supplementary Materials(File)
File 28.7 KB