Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T12:27:11.252Z Has data issue: false hasContentIssue false

Ocellar Hybrids from the Tyrone Igneous Series, Ireland

Published online by Cambridge University Press:  01 May 2009

N. S. Angus
Affiliation:
Department of Geology, The University, Hull.

Abstract

Ocellar hybrid rocks, formed by metasomatic transformation of basalt xenoliths engulfed in granitic magma, are characterized by numerous small, oval quartz porphyroblasts, each sheathed with narrow rims of amphibole. The progressive development of these quartz ocelli, together with the general texture of the ocellar hybrid, is traced through a number of intermediate hybrid types. In some instances, the ocellar hybrid displays an intrusive relationship toward basalt and is thought to have undergone a certain amount of metasomatic mobilization.

Type
Articles
Copyright
Copyright © Cambridge University Press 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alling, H. L., 1938. Plutonic Perthites. J. Geol., 46, 142165.CrossRefGoogle Scholar
Bailey, E. B., and McCallien, W. J., 1956. Composite Minor Intrusions and the Slieve Gullion Complex, Ireland. Lpool. Manchr. geol. Journ., 1, 466501.CrossRefGoogle Scholar
Bowen, N. L., 1928. The Evolution of the Igneous Rocks. Princeton Univ. Press.Google Scholar
Hartley, J. J., 1933. The Geology of North-Eastern Tyrone and the adjacent parts of County Londonderry. Proc. R. Irish Acad., 41B 218285.Google Scholar
King, B. C., 1948. The Forms and Structural Features of Aplite and Pegmatite Dikes and Veins in the Osi Area of the Northern Provinces of Nigeria and the Criteria that indicate a Nondilational Mode of Emplacement. J. Geol., 56, 459475.CrossRefGoogle Scholar
Lacroix, A., 1893. Les Enclaves des Roches volcaniques. Protat Frères, Macon.Google Scholar
Muir, I. D., 1953. Quartzite Xenoliths from the Ballachulish Granodiorite. Geol. Mag., 90, 409428.CrossRefGoogle Scholar
Nockolds, S. R., 1940. The Garabal Hill-Glen Fyne Igneous Complex. Quart. J. geol. Soc. Lond., 96, 451511.CrossRefGoogle Scholar
Peach, B. N., Clough, C. T., and others, 1912. The Geology of Ben Wyvis, Carn Chuinneag, Inchbae, and the surrounding country. Mem. geol. Surv. U.KGoogle Scholar
Phillips, W. J., 1955. The Metasomatic Rocks associated with the CriffelDalbeattie Granodiorite. Geol. Mag., 92, 120.CrossRefGoogle Scholar
Ramberg, H., 1952. The Origin of Metamorphic and Metasomatic Rocks. Chicago Univ. PressGoogle Scholar
Read, H. H., 1926. The Mica-Lamprophyres of Wigtonshire. Geol. Mag., 63, 422429.CrossRefGoogle Scholar
Reynolds, D. L., 1946. The Sequence of Geochemical Changes leading to Granitization. Quart. J. geol. Soc. Lond., 102, 389446.CrossRefGoogle Scholar
Rosenbusch, H., 1887. Mikroskopische Physiographie der Mineralien und Gesteine, II. Massige Gesteine. Stuttgart.Google Scholar
Sederholm, J. J., 1916. On Synantetic Minerals and related phenomena. Bull. Comm. Geol. Finlande, No. 48Google Scholar
Thomas, H. H., and Smith, W. C., 1932. Xenoliths of Igneous Origin in the Tregastel–Ploumanac'h Granite. Quart. J. geol. Soc. Lond., 88, 274296.CrossRefGoogle Scholar
Wells, A. K., and Wooldridge, S.W., 1931. The Rock Groups of Jersey, with special reference to Intrusive Phenomena at Ronez. Proc. Geol. Ass. Lond., 42, 178215.CrossRefGoogle Scholar
Winchell, A. H., and Winchell, H., 1951. Elements of Optical Mineralogy, Part II. Wiley and Sons, New York.Google Scholar