Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T08:01:56.609Z Has data issue: false hasContentIssue false

Observations on the Kaiserstuhl loess

Published online by Cambridge University Press:  01 May 2009

I. J. Smalley
Affiliation:
Department of Civil Engineering, University of Leeds, Leeds LS2 9JT
D. H. Krinsley
Affiliation:
Department of Geology, Sedgwick Museum, Cambridge CB2 3EQ
C. Vita-Finzi
Affiliation:
Department of Geography, University College London, London WC1E 6BT

Summary

Examination of Kaiserstuhl loess material by scanning electron microscopy reveals fine material adhering to the major particles, fracture features, carbonate overgrowths and signs of particle weathering; all of which appear typical of loess material. The carbonate overgrowths included discrete rhombic crystals, which are possibly dolomite. Alpine and Northern glaciers could have provided fine quartz material for the Kaiserstuhl loess; an Alpine source seems more likely, with perhaps some fluvial transportation involved.

Type
Articles
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cegla, J., Buckley, T. & Smalley, I. J. 1971. Microtextures of particles from some European loess deposits. Sedimentology 17, 129–34.Google Scholar
Charlesworth, J. K. 1957. The Quaternary Era. Arnold, London, 1700 pp.Google Scholar
Fournier, R. O. 1960. Solubility of quartz in water in the temperature interval from 25°C to 300°C. Bull. geol. Soc. Am., 71, 1867–8.Google Scholar
Grahmann, R. 1932. Der Löss in Europa. Mitt. Ges. Erdk. zu Lpz. 51 (for 1930–31), 524.Google Scholar
Iddings, J. P. 1911. Rock Minerals. Wiley, New York, 607 pp.Google Scholar
Krinsley, D. & Margolis, S. 1969. A study of quartz sand grain surface textures with the scanning electron microscope. Trans. N. Y. Acad. Sci. 31, 457–77.Google Scholar
Orombelli, G. 1970. I depositi loessici di Copreno (Milano). Boll. Soc. geol. ital. 89, 529–46.Google Scholar
Ribault, L. le. 1971. Présence d'une pellicule de silice amorphe à la surface de cristaux de quartz des formations sableuses. C. R. Acad. Sci. Fr. 272D, 1933–6.Google Scholar
Siever, R. 1962. Silica solubility, 0–200°C, and the diagenesis of siliceous sediments. J. Geol. 70, 127–50.Google Scholar
Smalley, I. J. 1966. The properties of glacial loess and the formation of loess deposits. J. Sedim. Petrol. 36, 669–76.Google Scholar
Smalley, I. J. 1968. The loess deposits and Neolithic culture of Northern China. Man 3, 224–41.Google Scholar
Smalley, I. J. 1970. Calcium carbonate encrustations on quartz grains in loess from the Karlsruhe region. Naturw. 57, 87.Google Scholar
Smalley, I. J. 1971. ‘In-situ’ theories of loess formation and the significance of the calcium carbonate content of loess. Earth Sci. Rev. 7, 6785.Google Scholar
Smalley, I. J. & Cabrera, J. G. 1970. The shape and surface texture of loess particles. Bull. geol. Soc. Am. 81, 1591–5.CrossRefGoogle Scholar
Smalley, I. J. 1971. The shape and surface texture of loess particles: reply. Bull. geol. Soc. Am. 82, 2361–4.CrossRefGoogle Scholar
Van Lier, J. A. 1959. The Solubility of Quartz. Kemink en Zoon, Utrecht, 54 pp.Google Scholar
Warnke, D. A. 1971. The shape and surface texture of loess particles: discussion. Bull. geol. Soc. Am. 82, 2357–60.Google Scholar
Willard, R. J. 1969. Scanning electron microscope gives researchers a closer look at rock fractures. Mining Eng. 21, 8890.Google Scholar