Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T02:38:44.626Z Has data issue: false hasContentIssue false

Non-Metasomatic Chlorite in Igneous Rocks

Published online by Cambridge University Press:  01 May 2009

E. Lehmann
Affiliation:
Hindenburgstrasse, 35, Garmisch-Partenkirchen, Germany.

Abstract

The determination of the stability conditions of chlorite, especially the stability temperature between 500° and 700° C. by B. W. Nelson, D. M. Roy, R. Roy, and H. S. Yoder complements the conclusions arrived at from the microscopical study of the interstitial chlorite in the diabase-minverite series of south-west England. These disprove the assumption that the chlorite generally originates from metasomatic reaction or devitrification of a glassy residue. Considering the formation of chlorite at a late stage of solidification, an explanation of its genesis is attempted on that basis. Possible effects on the petrologic evolution are discussed.

The chlorite taking part in the filling of amygdales and pseudoamygdales has formed preferentially by replacement of carbonates. Variation in form, degree, and associated products is exemplified. The appearance of a liquid carbonate phase, ascertained by P. J. Wyllie, O. F. Tuttle, and R. I. Harker in the system calcitewollastonite-water at temperatures between 640° and 680° C. seems to be realized likewise under natural conditions, and to provide a basis for the understanding of certain phenomena, especially in reaction zones.

Type
Articles
Copyright
Copyright © Cambridge University Press 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bowen, N. L., and Tuttle, O. F., 1949. The system MgO–SiO2–H2O. Bull. geol. Soc. Amer., 60, 439460.CrossRefGoogle Scholar
Harker, R. I., and Tuttle, O. F., 1956. Experimental data on the Pco2–T–curve for the reaction calcite + quartz ⇌ wollastonite + CO2 (carbon dioxide). Amer. J. Sci., 254, 239256.CrossRefGoogle Scholar
Hawes, G. W., 1875. On diabantite, a chlorite occurring in the trap of the Connecticut valley. Amer. J. Sci., ser. 3, 9, 454–7.CrossRefGoogle Scholar
Hentschel, H., 1952. Zur Petrographie des Diabas-Magmatismus im Lahn-Dill–Gebiet. Zeit. D. Geol. Ges., 104, 238246.Google Scholar
Jones, O. T., and Pugh, W. J., 1949. The laccolitic series. Amer. J. Sci., 247, 353371.CrossRefGoogle Scholar
Lehmann, E., 1940. Eruptivgesteine und Eisenerze im Mittel- und Oberdevon der Lahnmulde. Wetzlar.Google Scholar
Lehmann, E., 1949 Das Keratophyr–Weilburgit–Problem. Heidelberg. Beitr. Min. Pet., 2, 1166.Google Scholar
Lehmann, E., 1963. Uber Diabasgesteine SW-Englands und damit verbundene Probleme. Zeit. D. Geol. Ges., 115 (in press).Google Scholar
MacDonald, G. A., 1949. Hawaiian petrographic province. Bull. geol. Soc. Amer., 60, 15411596.CrossRefGoogle Scholar
Nelson, B. W., and Roy, R., 1958. Synthesis of the chlorites. Amer. Min., 43, 707725.Google Scholar
Niggli, P., 1920. Lehrbuch der Mineralogie. Berlin.Google Scholar
Roy, D. M., and Roy, R., 1955. Synthesis and stability of the minerals in the system MgO–Al2O3–SiO2–H2O. Amer. Min., 40, 147–70.Google Scholar
Tomkeieff, S. J., 1937. Petrochemistry of the Scottish Carboniferous-Permian igneous rocks. Bull. Volc., Ser. II, 5987.CrossRefGoogle Scholar
Wyllie, P. J., and Tuttle, O. F., 1950. Synthetic carbonatite magma. Nature, 183, 770.CrossRefGoogle Scholar
Wyllie, P. J., 1960. a. Melting of calcite in the presence of water. Amer. Min., 44, 569627.Google Scholar
Wyllie, P. J., 1960. b. Experimental verification for the magmatic origin of carbonatites. Int. Geol. Congr. XXI. Session, Repts, 310318.Google Scholar
Wyllie, P. J., 1962. Carbonatite lavas. Nature, 194, 1269.Google Scholar
Yoder, H. S., 1952. The MgO–Al2O3–SiO2–H2O system and the related metamorphic facies. Amer. J. Sci. Bowen Volume, 569627.Google Scholar