Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T04:09:38.988Z Has data issue: false hasContentIssue false

New late Middle to early Late Ordovician U–Pb zircon ages of extension-related felsic volcanic rocks in the Eastern Pyrenees (NE Iberia): tectonic implications

Published online by Cambridge University Press:  03 April 2019

Joan Martí*
Affiliation:
Volcanology Group, Institute of Earth Sciences Jaume Almera, CSIC, Lluís Solé Sabarís s/n, 08028 Barcelona, Spain
Luigi Solari
Affiliation:
Centro de Geociencias, UNAM, Campus Juriquilla, 76230 Queretaro, Mexico
Josep Maria Casas
Affiliation:
Departament de Dinàmica de la Terra i de l’Oceà-Institut de Recerca Geomodels, Facultat de Ciències de la Terra, Universitat de Barcelona, Martí i Franquès s/n, 08028Spain
Martim Chichorro
Affiliation:
GEOBIOTEC, Departamento de Ciências da Terra, Universidade Nova de Lisboa, Portugal
*
*Author for correspondence: Joan Martí, Email: [email protected]

Abstract

Pre-Variscan basement rocks from the Pyrenees provide evidence of several magmatic episodes with complex geodynamic histories from late Neoproterozoic to Palaeozoic times. One of the most significant episodes, consisting of several granitic and granodioritic bodies and volcanic rocks, mostly pyroclastic in nature, dates from the Late Ordovician period. In the Eastern Pyrenees, this magmatism is well represented in the Ribes de Freser and Núria areas; here, the Núria orthogneiss and the Ribes granophyre, both dated at c. 457–460 Ma, seem to form a calc-alkaline plutonic suite emplaced at different crustal levels. The presence of numerous pyroclastic deposits and lavas interbedded with Upper Ordovician (Sandbian–lower Katian, formerly Caradoc) sediments, intruded by the Ribes granophyre, suggests that this magmatic episode also generated significant volcanism. Moreover, the area hosts an important volume of rhyolitic ignimbrites and andesitic lavas affected by Alpine deformation. These volcanic rocks were previously attributed to late Variscan volcanism, extensively represented in other areas of the Pyrenees. Here we present the first five laser-ablation U–Pb zircon dates for this ignimbritic succession and two new ages for the Ribes granophyre. The ages of the ignimbrites, overlapping within error, are all 460 Ma, suggesting a genetic relationship between the plutonic and volcanic rocks and indicating that the Sandbian–Katian magmatism is much more voluminous than reported in previous studies, and possibly includes mega-eruptions linked to the formation of collapse calderas.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre-Díaz, GJ and McDowell, FW (1993) Nature and timing of faulting and synextensional magmatism in the southern Basin and Range, central-eastern Durango, México. Geological Society of America Bulletin 105, 1435–44.2.3.CO;2>CrossRefGoogle Scholar
Alvaro, JJ, Casas, JM, Clausen, S and Quesada, C (2018) Early Palaeozoic geodynamics in NW Gondwana. Journal of Iberian Geology 44, 551–65.CrossRefGoogle Scholar
Buggisch, W, Joachimski, MM, Lehnert, O, Bergstrom, SM, Repetski, JE and Webers, GF (2010) Did intense volcanism trigger the first Late Ordovician icehouse? Geology 38, 327–30.CrossRefGoogle Scholar
Calvet, P, Lapierre, H and Charvet, J (1988) Diversité du volcanisme Ordovicien dans la région de Pierrefitte (Hautes Pyrénées): rhyolites calco-alcalines et basaltes alcalins. Comptes Rendus de l’Académie des Sciences de Paris D 307, 805–12.Google Scholar
Casas, JM (2010) Ordovician deformations in the Pyrenees: new insights into the significance of pre-Variscan (‘sardic’) tectonics. Geological Magazine 147, 674–89.CrossRefGoogle Scholar
Casas, JM and Fernández, O (2007) On the Upper Ordovician unconformity in the Pyrenees: new evidence from the La Cerdanya area. Geologica Acta 5, 193–8.Google Scholar
Casas, JM, Castinñeiras, P, Navidad, M, Liesa, M and Carreras, J (2010) New insights into the Late Ordovician magmatism in the Eastern Pyrenees: U–Pb SHRIMP zircon data from the Canigoó massif. Gondwana Research 17, 317–24.CrossRefGoogle Scholar
Casas, JM, Navidad, M, Castiñeiras, P, Liesa, M, Aguilar, C, Carreras, J, Hofman, M, Gärtner, A and Linnemann, U (2015) The Late Neoproterozoic magmatism in the Ediacaran series of the Eastern Pyrenees: new ages and isotope geochemistry. International Journal of Earth Sciences 104, 909–25.CrossRefGoogle Scholar
Castinñeiras, P, Navidad, M, Liesa, M, Carreras, J and Casas, JM (2008) U–Pb zircon ages (SHRIMP) for Cadomian and Lower Ordovician magmatism in the Eastern Pyrenees: new insights in the pre-Variscan evolution of the northern Gondwana margin. Tectonophysics 461, 228–39.Google Scholar
Cavet, P (1957) Le Paléozoïque de la zone axiale des Pyrénées orientales françaises entre le Roussillon et l’Andorre. Bulletin Service Carte Géologique France 55, 303518.Google Scholar
Cocherie, A, Baudin, Th, Autran, A, Guerrot, C, Fanning, CM and Laumonier, B (2005) U–Pb zircon (ID-TIMS and SHRIMP) evidence for the early Ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). Bulletin de la Société géologique de France 176, 269–82.CrossRefGoogle Scholar
Cohen, KM, Finney, SC, Gibbard, PL and Fan, J-X (2013) The ICS International Chronostratigraphic Chart. Episodes 36, 199204.CrossRefGoogle Scholar
Deloule, E, Alexandrov, P, Cheilletz, A, Laumonier, B and Barbey, P (2002) In-situ U–Pb zircon ages for Early Ordovician magmatism in the eastern Pyrenees, France: the Canigou orthogneisses. International Journal of Earth Sciences 91, 398405.CrossRefGoogle Scholar
Denèle, Y, Barbey, P, Deloule, E, Pelleter, E, Olivier, P and Gleizes, G (2009) Middle Ordovician U–Pb age of the Aston and Hospitalet orthogneissic laccoliths: their role in the Variscan evolution of the Pyrenees. Bulletin de la Société géologique de France 180, 209–16.CrossRefGoogle Scholar
Denèle, Y, Laumonier, B, Paquette, JL, Olivier, P, Gleizes, G and Barbey, P (2014) Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees. In The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust (eds Schulmann, K, Martínez Catalán, JR, Lardeaux, JM, Janousek, V and Oggiano, G), pp. 265–87. Geological Society of London, Special Publication no. 405.Google Scholar
Finney, SC and Berry, WBN (eds) (2010) The Ordovician Earth System. Geological Society of America, Special Paper no. 466, 193 pp.CrossRefGoogle Scholar
Gaggero, L, Oggiano, G, Funedda, A and Buzzi, L (2012) Rifting and arc-related Early Paleozoic volcanism along the north Gondwana margin: geochemical and geological evidence from Sardinia (Italy). Journal of Geology 120, 273–92CrossRefGoogle Scholar
García-Sansegundo, J, Gavaldà, J and Alonso, JL (2004) Preuves de la discordance de l’Ordovicien supérieur dans la zone axiale des Pyrénées: exemple du Dôme de la Garonne (Espagne, France). Comptes Rendus Geosciences 336, 1035–40.Google Scholar
Guillot, F, Schaltegger, U, Bertrand, JM, Deloule, E and Baudin, T (2002) Zircon U–Pb geochronology of Ordovician magmatism in the polycyclic Ruitor Massif (Internal W-Alps). International Journal of Earth Sciences 91, 964–78.CrossRefGoogle Scholar
Hartevelt, JJA (1970) Geology of the Upper Segre and Valira valleys, Central Pyrenees, Andorra/Spain. Leidse Geologische Mededelingen 45, 167236.Google Scholar
Heinisch, H (1981) Preliminary report on Early Paleozoic acidic volcanism in the Eastern and Southern Alps: a review. In IGCP No 5: Newsletter 3 (eds Karamata, S and Sassi, FP), pp. 80–8.Google Scholar
Helbing, H and Tiepolo, M (2005) Age determination of Ordovician magmatism in NE Sardinia and its bearing on Variscan basement evolution. Journal of the Geological Society, London 162, 689700.CrossRefGoogle Scholar
Herrmann, AD, Macleod, KG and Leslie, SA (2010) Did a volcanic mega-eruption cause global cooling during the Late Ordovician? Palaios 25, 831–36.CrossRefGoogle Scholar
Herrmann, AD, Haupt, BJ, Patzkowsky, ME, Seidov, D and Slingerland, RL (2004) Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 385410.CrossRefGoogle Scholar
Holland, SM and Patzkowsky, ME (1996) Sequence stratigraphy and long-term paleoceanographic change in the Middle and Upper Ordovician of the eastern United States. In Paleozoic Sequence Stratigraphy; Views from the North American Craton (eds Witzke, BJ, Ludvigson, GA and Day, J), pp. 117–29. Geological Society of America, Special Paper no. 306.Google Scholar
Horstwood, MSA, Košler, J, Gehrels, G, Jackson, SE, McLean, NM, Paton, C, Pearson, NJ, Sircombe, K, Sylvester, P, Vermeesch, P, Bowring, JF, Condon, DJ and Shoene, B (2016) Community-derived standards for LA-ICP-MS U–Th–Pb geochronology – uncertainty propagation, age interpretation and data reporting. Geostandards and Geoanalytical Research 40, 311–32.CrossRefGoogle Scholar
Huff, WD, Bergstrom, SM and Kolata, DR (1992) Gigantic Ordovician volcanic ash fall in North America and Europe: biological, tectonomagmatic, and event-stratigraphic significance. Geology 20, 875–78.2.3.CO;2>CrossRefGoogle Scholar
Huff, WD, Bergstrom, SM and Kolata, DR (2010) Ordovician explosive volcanism. In The Ordovician Earth System (eds Finney, SC and Berry, WBN), pp. 1328. Geological Society of America, Special Paper no. 466.Google Scholar
Jones, DS, Martini, AM, Fike, DA and Kaiho, K (2017) A volcanic trigger for Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology 45, 631–4.CrossRefGoogle Scholar
Klötzli, U, Klötzli, E, Günes, Z and Kosler, J (2009) Accuracy of laser ablation U–Pb zircon dating: results from a test using five different reference zircons. Geostandards and Geoanalytical Research 33, 515.CrossRefGoogle Scholar
Lago, M, Arranz, E, Pocovi, A, Gale, C and Gil-Imaz, A (2004) Permian magmatism and basin dynamics in the southern Pyrenees: a record of the transition from late Variscan transtension to early Alpine extension. In Permo-Carboniferous Magmatism and Rifting in Europe (eds Wilson, M, Neumann, E-R, Davies, GR, Timmerman, MJ, Heeremans, M and Larsen, BT), pp. 439–64. Geological Society of London, Special Publication no. 223.Google Scholar
Lefebvre, V, Servais, T, François, L and Averbuch, O (2010) Did a Katian large igneous province trigger the Late Ordovician glaciation? Palaeogeography, Palaeoclimatology, Palaeoecology 296, 310–19.Google Scholar
Lotout, C, Pitra, P, Poujol, M and Van Den Driessche, J (2017) Ordovician magmatism in the Lévézou massif (French Massif Central): tectonic and geodynamic implications. International Journal of Earth Sciences 106, 501–15.Google Scholar
Liesa, M, Carreras, J, Castineiras, P, Casas, JM, Navidad, M and Vila, M (2011) U–Pb zircon age of Ordovician magmatism in the Albera Massif (Eastern Pyrenees). Geologica Acta 9, 93101.Google Scholar
Lipman, PW (1992) Magmatism in the Cordilleran United States: progress and problems. In The Cordilleran Orogen: Conterminous U.S. (eds Burchfiel, BC, Lipman, PW and Zoback, ML), pp. 481514. Boulder, Colorado: Geological Society of America.Google Scholar
Ludwig, K (2008) User’s Manual for Isoplot 3.7: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no. 4, 77 pp.Google Scholar
Martí, J (1991) Caldera-like structures related to Permo-Carboniferous volcanism of the Catalan Pyrenees (NE Spain). Journal of Volcanology and Geothermal Research 45, 173–86.CrossRefGoogle Scholar
Martí, J, Muñoz, JA and Vaquer, R (1986) Les roches volcaniques de l’Ordovicien supérieur de la région de Ribes de Freser-Rocabruna (Pyrénées catalanes): caractères et signification. Comptes Rendus de l’Académie des Sciences de Paris 302, 1237–42.Google Scholar
Martínez, FJ, Iriondo, A, Dietsch, C, Aleinikoff, JN, Peucat, JJ, Cirès, JReche, J and Capdevila, R (2011) U–Pb SHRIMP-RG zircon ages and Nd signature of lower Paleozoic rifting-related magmatism in the Variscan basement of the Eastern Pyrenees. Lithos 127, 1023.CrossRefGoogle Scholar
Martínez, FJ, Dietsch, C, Aleiniikoff, J, Cirés, J, Arboleya, ML, Reche, J and Gómez-Gras, D (2016) Provenance, age, and tectonic evolution of Variscan flysch, southeastern France and northeastern Iberia based on zircon geochronology. Geological Society of America Bulletin 128, 842–59.CrossRefGoogle Scholar
Mezger, J and Gerdes, A (2016) Early Variscan (Visean) granites in the core of central Pyrenean gneiss domes: implications from laser ablation U–Pb and Th–Pb studies. Gondwana Research 29, 181–98.CrossRefGoogle Scholar
Müller, W, Shelley, JMG, Miller, P and Broude, S (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICP-MS system coupled to a two volume laser-ablation cell. Journal of Analytical Atomic Spectrometry 24, 209–14.Google Scholar
Navidad, M, Casas, JM, Castiñeiras, P, Barnolas, A, Fernández-Suárez, J, Liesa, M, Carreras, J and Gil-Peña, I (2010) Geochemical characterization and isotopic age of the Caradocian magmatism from North-Eastern Iberian Peninsula: insights from the Late Ordovician evolution of the northern Gondwana margin. Gondwana Research 17, 325–37.CrossRefGoogle Scholar
Padel, M, Alvaro, J, Casas, JM, Clausen, S, Poujol, M and Sánchez-García, T (2018 a) Cadomian volcanosedimentary complexes across the Ediacaran–Cambrian transition of the Eastern Pyrenees, southwestern Europe. International Journal of Earth Sciences 107, 1579–601.CrossRefGoogle Scholar
Padel, M, Clausen, S, Alvaro, J and Casas, JM (2018 b) Review of the Ediacaran-Lower Ordovician (pre-Sardic) stratigraphic framework of the Eastern Pyrenees, southwestern Europe. Geologica Acta 16, 339–55.Google Scholar
Paton, C, Hellstrom, J, Paul, B, Woodhead, J and Hergt, J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26, 2508–18.CrossRefGoogle Scholar
Paton, C, Woodhead, JD, Hellstrom, JC, Hergt, JM, Greig, A and Maas, R (2010) Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems 11, Q0AA06, doi: 10.1029/2009GC002618.CrossRefGoogle Scholar
Pereira, J, Castro, A, Chichorro, M, Fernández, C, Díaz-Alvarado, J, Martí, J and Rodríguez, C (2013) Chronological link between deep-seated processes in magma chambers and eruptions: Permo-Carboniferous magmatism in the core of Pangaea (Southern Pyrenees). Gondwana Research 25, 290308.CrossRefGoogle Scholar
Petrus, JA and Kamber, BS (2012) VizualAge: a novel approach to laser ablation ICP-MS U–Pb geochronology data reduction. Geostandards and Geoanalytical Research 36, 247–70.CrossRefGoogle Scholar
Pitra, P, Poujol, M, Den Driessche, JV, Poilvet, J-C and Paquette, J-L (2012) Early Permian extensional shearing of an Ordovician granite: the Saint-Eutrope “C/S-like” orthogneiss (Montagne Noire, French Massif Central). Comptes Rendus Geoscience 344, 377–84.CrossRefGoogle Scholar
Puddu, C, Alvaro, JJ and Casas, JM (2018) The Sardic unconformity and the Upper Ordovician successions of the Ribes de Freser area, Eastern Pyrenees. Journal of Iberian Geology 44, 603–17.CrossRefGoogle Scholar
Robert, JF and Thiebaut, J (1976) Découverte d’un volcanisme acide dans le Caradoc de la région de Ribes de Feser (Prov. de Gerone). Comptes Rendus de l’Académie des Sciences de Paris, D 282, 2050–79.Google Scholar
Roger, F, Respaut, JP, Brunel, M, Matte, Ph and Paquette, JL (2004) Première datation U–Pb des orthogneiss oeillés de la zone axiale de la Montgane Noire (Sud du Massif central): nouveaux témoins du magmatisme Ordovicien dans la chaîne varisque. Comptes Rendus Geoscience 336, 1928.CrossRefGoogle Scholar
Santanach, PF (1972) Sobre una discordancia en el Paleozoico inferior de los Pirineos orientales. Acta Geológica Hispánica 7, 129–32.Google Scholar
Sell, B, Ainsaar, L and Leslie, S (2013) Precise timing of the Late Ordovician (Sandbian) supereruptions and associated environmental, biological, and climatological events. Journal of the Geological Society, London 170, 711–14.CrossRefGoogle Scholar
Schaltegger, U, Abrecht, J and Corfu, F (2003) The Ordovician orogeny in the Alpine basement: constraints from geochronology and geochemistry in the Aar Massif (Central Alps). Schweizerische Mineralogische und Petrologische Mitteilunge 83, 183–95.Google Scholar
Slama, J, Kosler, J, Condon, DJ, Crowley, JL, Gerdes, A, Hanchar, JM,Horstwood, MSA, Morris, GA, Nasdala, L, Norberg, N, Schaltegger, U, Schoene, B, Tubrett, MN and Whitehouse, MJ (2008) Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.CrossRefGoogle Scholar
Solari, LA, Gómez-Tuena, A, Bernal, JP, Pérez-Arvizu, O and Tanner, M (2010) U–Pb zircon geochronology by an integrated LA-ICP-MS microanalytical workstation: achievements in precision and accuracy. Geostandards and Geoanalytical Research 34, 518.CrossRefGoogle Scholar
Trombetta, A, Cirrincione, R, Corfu, F, Mazzoleni, P and Pezzino, A (2004) Mid-Ordovician U–Pb ages porphyroids in the Peloritan Mountains (NE Sicily): palaeogeographical implications for the evolution of the Alboran microplate. Journal of the Geological Society, London 161, 265–76.CrossRefGoogle Scholar
Van Lichtervelde, M, Grand’Homme, A, de Saint-Blanquat, M, Olivier, P, Gerdes, A, Paquette, J-L, Melgarejo, JC, Druguet, E. and Alfonso, P (2017) U–Pb geochronology on zircon and columbite-group minerals of the Cap de Creus pegmatites, NE Spain. Mineralogy and Petrology 111, 121.CrossRefGoogle Scholar
von Raumer, JF (1998) The Paleozoic evolution in the Alps: from Gondwana to Pangea. Geologische Rundschau 87, 407–35.CrossRefGoogle Scholar
von Raumer, JF and Stampfli, GM (2008) The birth of the Rheic Ocean – Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461, 920.Google Scholar
von Raumer, JF, Stampfli, GM and Bussy, F (2003) Gondwana-derived microcontinents – the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365, 722.Google Scholar
Wiedenbeck, M, Allé, P, Corfu, F, Griffin, WL, Meier, M, Oberli, F, Von Quadt, A, Roddick, JC and Spiegel, W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards and Geoanalytical Research 19, 123.CrossRefGoogle Scholar
Young, SA, Saltzmann, MR, Foland, KA, Linder, JS and Kump, LR (2009) A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): links to volcanism and climate? Geology 37, 951–4.Google Scholar
Zurbriggen, R, Franz, L and Handy, MR (1997) Pre-Variscan deformation, metamorphism and magmatism in the Strona-Ceneri Zone (southern Alps of northern Italy and southern Switzerland). Schweizerische Mineralogische und Petrologische Mitteilungen 77, 361–80.Google Scholar
Supplementary material: PDF

Martí et al. supplementary material

Martí et al. supplementary material 1

Download Martí et al. supplementary material(PDF)
PDF 2.7 MB