Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T17:03:34.408Z Has data issue: false hasContentIssue false

A morphological and taxonomic appraisal of the oldest anomalocaridid from the Lower Cambrian of Poland

Published online by Cambridge University Press:  02 July 2015

ALLISON C. DALEY*
Affiliation:
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
DAVID A. LEGG
Affiliation:
Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
*
Author for correspondence: [email protected]

Abstract

Material previously referred to as Cassubia infercambriensis was re-examined and found to represent a composite fossil of a Peytoia-like anomalocaridid frontal appendage and an arthropod of uncertain affinities comparable to some bivalved arthropod taxa. The frontal appendage is referred to the genus Peytoia based on the presence of elongated ventral spines bearing a single row of auxiliary spines. As well as representing the oldest example of an anomalocaridid in the fossil record (Series 2, Stage 3), Peytoia infercambriensis is also the only record of this group from the East European Craton, therefore extending both the temporal and geographic range of the anomalocaridid family Hurdiidae.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bousfield, E. L. 1995. A contribution to the natural classification of lower and middle Cambrian arthropods: food-gathering and feeding mechanisms. Amphipacifica 2, 334.Google Scholar
Briggs, D. E. G., Lieberman, B. S., Hendricks, J. R., Halgedahl, S. L. & Jarrard, R. D. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology 82, 238–54.Google Scholar
Briggs, D. E. G. & Robison, R. A. 1984. Exceptionally preserved nontrilobite arthropods and Anomalocaris from the Middle Cambrian of Utah. The University of Kansas Paleontological Contributions 111, 123.Google Scholar
Caron, J.-B., Gaines, R. R., Aria, C., Mángano, M. G. & Streng, M. 2014. A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies. Nature Communications 5, 3210. doi: 10.1038/ncomms4210.Google Scholar
Caron, J.-B., Gaines, R. R., Mángano, M. G., Streng, M. & Daley, A. C. 2010. A new Burgess Shale-type assemblage from the “thin” Stephen Formation of the southern Canadian Rockies. Geology 38, 811–14.Google Scholar
Collins, D. 1996. The “evolution” of Anomalocaris and its classification in the arthropod Class Dinocarida (nov.) and Order Radiodonta (nov.). Journal of Paleontology 70, 280–93.Google Scholar
Cong, P., Ma, X., Hou, X., Edgecombe, G. D. & Strausfeld, N. J. 2014. Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature 513, 553–42.CrossRefGoogle ScholarPubMed
Conway Morris, S. 1989. The persistence of Burgess Shale-type faunas: implications for the evolution of deeper-water faunas. Transactions of the Royal Society of Edinburgh: Earth Sciences 80, 271–83.Google Scholar
Conway Morris, S. & Robison, R. A. 1988. More soft-bodied animals and algae from the middle Cambrian of Utah and British Columbia. The University of Kansas Paleontological Contributions 122, 148.Google Scholar
Daley, A. C. & Bergström, J. 2012. The oral cone of Anomalocaris is not a classic “peytoia”. Naturwissenschaften 99, 501–4.Google Scholar
Daley, A. C. & Budd, G. E. 2010. New anomalocaridid appendages from the Burgess Shale, Canada. Palaeontology 53, 721–38.Google Scholar
Daley, A. C., Budd, G. E. & Caron, J.-B. 2013. Morphology and systematics of the anomalocaridid arthropod Hurdia from the Middle Cambrian of British Columbia and Utah. Journal of Systematic Palaeontology 11, 743–87.CrossRefGoogle Scholar
Daley, A. C., Budd, G. E., Caron, J.-B., Edgecombe, G. D. & Collins, D. 2009. The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science 323, 1597–600.Google Scholar
Daley, A. C. & Edgecombe, G. D. 2014. Morphology of Anomalocaris canadensis from the Burgess Shale. Journal of Paleontology 88, 6891.CrossRefGoogle Scholar
Delle Cave, L., Insom, E. & Simonetta, A. M. 1998. Advances, diversions, possible relapses and additional problems in understanding the early evolution of the Articulata. Italian Journal of Zoology 65, 1938.CrossRefGoogle Scholar
Delle Cave, L. & Simonetta, A. M. 1991. Early Palaeozoic arthropods and problems of arthropod phylogeny; with some notes on taxa of doubtful affinities. In The Early Evolution of Metazoa and the Significance of Problematic Taxa (eds Simonetta, A. M. & Conway Morris, S.), pp. 189244. Cambridge: Cambridge University Press.Google Scholar
Dzik, J. & Lendzion, K. 1988. The oldest arthropods of the East European Platform. Lethaia 21, 2938.CrossRefGoogle Scholar
Fletcher, T. P. & Collins, D. H. 1998. The Middle Cambrian Burgess Shale and its relationship to the Stephen Formation in the southern Canadian Rocky Mountains. Canadian Journal of Earth Sciences 35, 413–36.Google Scholar
Fletcher, T. P. & Collins, D. H. 2003. The Burgess Shale and associated Cambrian formations west of the Fossil Gully Fault Zone on Mount Stephen, British Columbia. Canadian Journal of Earth Sciences 40, 1823–38.CrossRefGoogle Scholar
Gaines, R. R. 2014. Burgess Shale-type preservation and its distribution in space and time. In Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization (eds Laflamme, M., Schiffbauer, J. D. & Darroch, S. A. F.), pp. 123–46. The Paleontological Society Papers, Volume 20.Google Scholar
Haug, J. T., Waloszek, D., Maas, A., Liu, Y. & Haug, C. 2012. Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology 55, 369–99.CrossRefGoogle Scholar
Hou, X.-G., Bergström, J. & Ahlberg, P. 1995. Anomalocaris and other large animals in the lower Cambrian Chengjiang fauna of southwest China. GFF 117, 163–83.Google Scholar
Kühl, G., Briggs, D. E. G. & Rust, J. 2009. A great-appendage arthropod with a radial mouth from the Lower Devonian Hunsrück Slate, Germany. Science 323, 771–3.Google Scholar
Landing, E., Geyer, G., Brasier, M. D. & Bowring, S. 2013. Cambrian evolutionary radiation: context, correlation, and chronostratigraphy – overcoming deficiencies of the first appearance datum (FAD) concept. Earth-Science Reviews 123, 133–72.CrossRefGoogle Scholar
Legg, D. A. & Caron, J.-B. 2014. New middle Cambrian bivalved arthropods from the Burgess Shale (British Columbia, Canada). Palaeontology 57, 691711.Google Scholar
Legg, D. A., Sutton, M. D. & Edgecombe, G. D. 2013. Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nature Communications 4, 2485. doi: 10.1038/ncomms3485.Google Scholar
Legg, D. A., Sutton, M. D., Edgecombe, G. D. & Caron, J.-B. 2012. Cambrian bivalved arthropod reveals origin of arthrodization. Proceedings of the Royal Society B 279, 4699–704.Google Scholar
Lendzion, K. 1975. Fauna of the Morgella Zone in the Polish Lower Cambrian. Kwartalnik geologiczny 19, 237–42.Google Scholar
Lendzion, K. 1977. Cassubia – a new generic name for Pomerania Lendzion 1975. Kwartalnik geologiczny 21, 211.Google Scholar
Liu, Q. 2013. The first discovery of anomalocaridid appendages from the Balang Formation (Cambrian Series 2) in Hunan, China. Alcheringa 37, 338–43.Google Scholar
Moczydłowska, M. 2002. Early Cambrian phytoplankton diversification and appearance of trilobites in the Swedish Caledonides with implications for coupled evolutionary events between primary producers and consumers. Lethaia 35, 191214.Google Scholar
O’Brien, L. J. & Caron, J.-B. 2012. A new stalked filter-feeder from the Middle Cambrian Burgess Shale, British Columbia, Canada. PLoS ONE 7, 29233. doi: 10.1371/journal.pone.0029233 Google Scholar
Paterson, J. R., Edgecombe, G. D., García-Bellido, D. C., Jago, J. B. & Gehling, J. G. 2010. Nektaspid arthropods from the Lower Cambrian Emu Bay Shale Lagerstätte, South Australia, with a reassessment of lamellipedian relationships. Palaeontology 53, 377402.Google Scholar
Tanaka, G., Hou, X., Ma, X., Edgecombe, G. D. & Strausfeld, N. J. 2013. Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature 502, 364–7.Google Scholar
Van Roy, P. & Briggs, D. E. G. 2011. A giant Ordovician anomalocaridid. Nature 473, 510–3.Google Scholar
Van Roy, P., Daley, A. C. & Briggs, D. E. G. 2015. Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps. Nature 522, 7780.Google Scholar
Vinther, J., Stein, M., Longrich, N. R. & Harper, D. A. T. 2014. A suspension-feeding anomalocarid from the Early Cambrian. Nature 507, 496–9.Google Scholar
Walcott, C. D. 1911. Cambrian geology and paleontology. II. Middle Cambrian holothurians and medusa. Smithsonian Miscellaneous Collections 57, 4168.Google Scholar
Whittington, H. B. & Briggs, D. E. G. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B 309, 569609.Google Scholar
Zhang, Z., Han, J. & Degan, H. 2002. New occurrence of the Burgess Shale arthropod Sidneyia in the Early Cambrian Chengjiang Lagerstätte (South China), and revision of the arthropod Urokodia . Alcheringa 26, 18.Google Scholar
Zhang, X., Shu, D., Li, Y. & Han, J. 2001. New sites of Chengjiang fossils: crucial windows on the Cambrian explosion. Journal of the Geological Society, London 158, 211–8.Google Scholar
Zhang, X., Zhao, Y., Yang, R. & Degan, S. 2002. The Burgess Shale arthropod Mollisonia (M. sinica new species): new occurrence from the Middle Cambrian Kaili Fauna of Southwest China. Journal of Paleontology 76, 1106–8.Google Scholar