Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T18:58:30.841Z Has data issue: false hasContentIssue false

Modelling the impact of pulsed CAMP volcanism on pCO2 and δ13C across the Triassic–Jurassic transition

Published online by Cambridge University Press:  08 June 2015

AVIV BACHAN*
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California, USA
JONATHAN L. PAYNE
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California, USA
*
Author for correspondence: [email protected]

Abstract

A sharp negative δ13C excursion coincides with the end-Triassic mass extinction. This is followed by a protracted interval of 13C enrichment. These isotopic events occurred simultaneously with the emplacement of the Central Atlantic Magmatic Province (CAMP). Here we use a carbon cycle box model to explore the effects of episodic carbon release – constrained by recently developed high-resolution chronology – on atmospheric pCO2, ocean chemistry and the δ13C of the ocean–atmosphere carbon pool. Our results are consistent with previous modelling efforts in suggesting that the sharp negative δ13C excursion and acidification event associated with the extinction are best explained by the rapid release (<20 ka) of highly 13C-depleted carbon (−70‰). However, our model also indicates that the likely short duration of the excursion requires organic carbon burial to have closely followed carbon injection. The age within the Hettangian of the large positive δ13C excursion which follows is currently uncertain. If early Hettangian in age, then our modelling indicates that the interval of 13C enrichment was closely associated with the volcanic CO2 pulses and pCO2 peaks. If late Hettangian in age, then the 13C enrichment must have lagged the carbon input substantially (by hundreds of thousands of years) and was associated with CO2 drawdown and over-cooling. Our modelling highlights the need for improved age constraints on Hettangian stratigraphic sections in order to test between two distinct and contrasting possibilities: continuing carbon cycle instability due to recurrent perturbations from CAMP activity or a delayed recovery arising from internal biosphere dynamics.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current Address: Department of Geosciences, Pennsylvania State University, Pennsylvania, USA

References

Archer, D., Kheshgi, H. & Reimer, E. M. 1997. Multiple timescales for neutralization of fossil fuel CO2 . Geophysical Research Letters 24, 405–8, doi: 10.1029/97GL00168.CrossRefGoogle Scholar
Bachan, A., van de Schootbrugge, B., Fiebig, J., McRoberts, C. A., Ciarapica, G. & Payne, J. L. 2012. Carbon cycle dynamics following the end-Triassic mass extinction: constraints from paired δ13Ccarb and δ13Corg records. Geochemistry, Geophysics, Geosystems 13, Q09,008, doi: 10.1029/2012GC004150.Google Scholar
Bachan, A., van de Schootbrugge, B. & Payne, J. L. 2014. The end-Triassic negative δ13C excursion: a lithologic test. Palaeogeography, Palaeoclimatology, Palaeoecology 412, 177–86.CrossRefGoogle Scholar
Bartolini, A., Guex, J., Spangenberg, J. E., Schoene, B., Taylor, D. G., Schaltegger, U. & Atudorei,V. 2012. Disentangling the Hettangian carbon isotope record: implications for the aftermath of the end-Triassic mass extinction. Geochemistry, Geophysics, Geosystems 13 (1), Q01,007, doi: 10.1029/2011GC003807.CrossRefGoogle Scholar
Beerling, D. J. & Berner, R. A. 2002. Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event. Global Biogeochemical Cycles 16 (3), 101–13, doi: 10.1029/2001GB001637.Google Scholar
Bergman, N. M., Lenton, T. M. & Watson, A. J. 2004. COPSE: a new model of biogeochemical cycling over Phanerozoic time. American Journal of Science 304 (5), 397437, doi: 10.2475/ajs.304.5.397.Google Scholar
Berner, R. A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean; its geochemical and environmental significance. American Journal of Science 282 (4), 451–73.CrossRefGoogle Scholar
Berner, R. A. 2004. The Phanerozoic Carbon Cycle: CO2 and O2. Oxford: Oxford University Press.CrossRefGoogle Scholar
Berner, R. A. 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2 . Geochimica et Cosmochimica Acta 70 (23), 5653–64, doi: 10.1016/j.gca.2005.11.032.CrossRefGoogle Scholar
Berner, R. A. & Beerling, D. J. 2007. Volcanic degassing necessary to produce a CaCO3 undersaturated ocean at the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4), 368–73, doi: 10.1016/j.palaeo.2006.06.039.Google Scholar
Blackburn, T. J., Olsen, P. E., Bowring, S. A., McLean, N. M., Kent, D. V., Puffer, J., McHone, G., Rasbury, E. T. & Et-Touhami, M. 2013. Zircon U-Pb geochronology links the End-Triassic extinction with the Central Atlantic Magmatic Province. Science 340 (6135), 941–5, doi: 10.1126/science.1234204.Google Scholar
Bralower, T. J. 1988. Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian - Turonian boundary interval: implication for the origin and timing of oceanic anoxia. Paleoceanography 3 (3), 275316.Google Scholar
Broecker, W. S. 1971. A kinetic model for the chemical composition of sea water. Quaternary Research 1 (2), 188207, doi: 10.1016/0033-5894(71)90041-X.CrossRefGoogle Scholar
Broecker, W. & Peng, T. 1982. Tracers in the Sea. Palisades, NY: Lamont-Doherty Geological Observatory, Columbia University.Google Scholar
Carter, E. S. & Hori, R. S. 2005. Global correlation of the radiolarian faunal change across the Triassic-Jurassic boundary. Canadian Journal of Earth Sciences 42 (5), 777–90.CrossRefGoogle Scholar
Cartigny, P. 2010. Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana). Earth and Planetary Science Letters 296 (3), 329–39.Google Scholar
Clémence, M. E., Bartolini, A., Gardin, S., Paris, G., Beaumont, V. & Page, K. N. 2010. Early Hettangian benthic–planktonic coupling at Doniford (SW England): palaeoenvironmental implications for the aftermath of the end-Triassic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology 295 (1–2), 102–15.Google Scholar
Črne, A. E., Weissert, H., Špela, G. & Bernasconi, S. M. 2011. A biocalcification crisis at the Triassic-Jurassic boundary recorded in the Budva basin (Dinarides, Montenegro). Geological Society of America Bulletin 123 (1–2), 4050, doi: 10.1130/B30157.1.CrossRefGoogle Scholar
Dal Corso, J., Marzoli, A., Tateo, F., Jenkyns, H. C., Bertrand, H., Youbi, N., Mahmoudi, A., Font, E., Buratti, N. & Cirilli, S. 2014. The dawn of CAMP volcanism and its bearing on the end-Triassic carbon cycle disruption. Journal of the Geological Society 171, 153–74.Google Scholar
Deenen, M. H. L., Ruhl, M., Bonis, N. R., Krijgsman, W., Kuerschner, W. M., Reitsma, M. & van Bergen, M. J. 2010. A new chronology for the end-Triassic mass extinction. Earth and Planetary Science Letters 291 (1–4), 113–25.CrossRefGoogle Scholar
Deines, P. 2002. The carbon isotope geochemistry of mantle xenoliths. Earth-Science Reviews 58 (3), 247–78.CrossRefGoogle Scholar
DePaolo, D. J. 2004. Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. Reviews in Mineralogy and Geochemistry 55, 255–88.Google Scholar
Emerson, S. & Hedges, J. I. 2008. Chemical Oceanography and the Carbon Cycle. Cambridge: Cambridge University Press.Google Scholar
Gaetani, M. 1970. Faune Hettangiane della parte orientale della provincia di Bergamo. Rivista Italian di Paleontologia e Stratigraphia 76 (3), 355442.Google Scholar
Galli, M. T., Jadoul, F., Bernasconi, S. M., Cirilli, S. & Weissert, H. 2007. Stratigraphy and palaeoenvironmental analysis of the Triassic-Jurassic transition in the western Southern Alps (Northern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4), 5270.CrossRefGoogle Scholar
Galli, M. T., Jadoul, F., Bernasconi, S. M. & Weissert, H. 2005. Anomalies in global carbon cycling and extinction at the Triassic/Jurassic boundary: evidence from a marine C-isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology 216 (3–4), 203–14.Google Scholar
Garrels, R. & Perry, E. 1974. Cycling of carbon, sulphur and oxygen through geologic time. In The Sea: Ideas and Observations on Progress in the Study of the Seas, volume 5 (ed. Goldberg, A.D.), pp. 303–36. New York: John Wiley & Sons.Google Scholar
Greene, S. E., Martindale, R. C., Ritterbush, K. A., Bottjer, D. J., Corsetti, F. A. & Berelson, W. M. 2012. Recognizing ocean acidification in deep time: an evaluation of the evidence for acidification across the Triassic-Jurassic boundary. Earth-Science Reviews 113 (1–2), 7293.Google Scholar
Guex, J., Bartolini, A., Atudorei, V. & Taylor, D. 2004. High-resolution ammonite and carbon isotope stratigraphy across the Triassic-Jurassic boundary at New York Canyon (Nevada). Earth and Planetary Science Letters 225 (1–2), 2941.Google Scholar
Guex, J., Schoene, B., Bartolini, A., Spangenberg, J., Schaltegger, U., O’Dogherty, L., Taylor, D., Bucher, H. & Atudorei, V. 2012. Geochronological constraints on post-extinction recovery of the ammonoids and carbon cycle perturbations during the Early Jurassic. Palaeogeography, Palaeoclimatology, Palaeoecology 346–347, 111.CrossRefGoogle Scholar
Hallam, A. 1981. The end-Triassic bivalve extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 35, 144.Google Scholar
Hallam, A. 1994. Strontium isotope profiles of Triassic-Jurassic boundary sections in England and Austria. Geology 22 (12), 1079–82.Google Scholar
Hallam, A. 1995. Oxygen-restricted facies of the basal Jurassic of north west Europe. Historical Biology 10, 247–57.CrossRefGoogle Scholar
Hallam, A. & Goodfellow, W. D. 1990. Facies and geochemical evidence bearing on the end-Triassic disappearance of the Alpine reef ecosystem. Historical Biology 4, 131–8.Google Scholar
Hallam, A. & Wignall, P. B. 1999. Mass extinctions and sea-level changes. Earth-Science Reviews 48 (4), 217–50.CrossRefGoogle Scholar
Hartnett, H. E., Keil, R. G., Hedges, K. M. & Devol, A.H. 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391, 572–75.Google Scholar
Hautmann, M. 2004. Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies 50, 257–61.Google Scholar
Hayes, J. M., Kaplan, I. R. & Wedeking, K. M. 1983. Precambrian organic geochemistry, preservation of the record. In Earth's Earliest Biosphere: Its Origin and Evolution (ed. Schopf, W. J.), pp. 93134. Princeton, NJ: Princeton University Press.Google Scholar
Hayes, J. M., Strauss, H. & Kaufman, A. J. 1999. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology 161 (1–3), 103–25, doi: 10.1016/S0009-2541(99)00083-2.Google Scholar
Hesselbo, S. P., Robinson, S. A., Surlyk, F. & Piasecki, S. 2002. Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geology 30 (3), 251–4.Google Scholar
Horita, J., Zimmermann, H. & Holland, H. D. 2002. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochimica et Cosmochimica Acta 66 (21), 3733–56.Google Scholar
Hüsing, S. K., Beniest, A., van der Boon, A., Abels, H. A., Deenen, M. H. L., Ruhl, M. & Krijgsman, W. 2014. Astronomically-calibrated magnetostratigraphy of the Lower Jurassic marine successions at St. Audrie's Bay and East Quantoxhead (Hettangian–Sinemurian; Somerset, UK). Palaeogeography, Palaeoclimatology, Palaeoecology 403, 4356.Google Scholar
Huynh, T. T. & Poulsen, C. J. 2005. Rising atmospheric δ13C as a possible trigger for the end-Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 217 (3–4), 223–42.CrossRefGoogle Scholar
Ingall, E. D., Bustin, R. M. & Cappellen, P. V. 1993. Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochimica et Cosmochimica Acta 57, 303–16.Google Scholar
Jadoul, F. & Galli, M. 2008. The Hettangian shallow water carbonates after the Triassic/Jurassic biocalcification crisis: the Albenza formation in the western Southern Alps. Rivista Italiana di Paleontologia e Stratigrafia 114 (3), 453–70.Google Scholar
Kent, D. V. & Olsen, P. E. 2008. Early Jurassic magnetostratigraphy and paleolatitudes from the Hartford continental rift basin (eastern North America): testing for polarity bias and abrupt polar wander in association with the Central Atlantic Magmatic Province. Journal of Geophysical Research: Solid Earth (1978–2012) 113, B06105.Google Scholar
Kiessling, W. & Simpson, C. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology 17 (1), 5667.Google Scholar
Knight, K. B., Nomade, S., Renne, P. R., Marzoli, A., Bertrand, H. & Youbi, N. 2004. The Central Atlantic magmatic province at the Triassic-Jurassic boundary: paleomagnetic and 40Ar/39Ar evidence from Morocco for brief, episodic volcanism. Earth and Planetary Science Letters 228(12), 143–60.CrossRefGoogle Scholar
Korte, C., Hesselbo, S. P., Jenkyns, H. C., Rickaby, R. E. M. & Spötl, C. 2009. Palaeoenvironmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic-Jurassic boundary sections in SW Britain. Journal of the Geological Society 166 (3), 431–45.Google Scholar
Kronecker, W. 1910. Zur grenzsbestimmung zwischen trias und lias in den sudalpen. Zentralblatt für Mineralogie, Geologie und Paläontologie 1910, 124.Google Scholar
Kump, L. R. 1991. Interpreting carbon-isotope excursions: strangelove oceans. Geology 19 (4), 299302.Google Scholar
Kump, L. R. & Arthur, M. A. 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chemical Geology 161(13), 181–98, doi: 10.1016/S0009-2541(99)00086-8.Google Scholar
Lindström, S., van de Schootbrugge, B., Dybkjær, K., Pedersen, G. K., Fiebig, J., Nielsen, L. H. & Richoz, S. 2012. No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass extinction. Geology 40 (6), 531–4.Google Scholar
Longridge, L. M., Carter, E. S., Haggart, J. W. & Smith, P. L. 2007 a. The Triassic-Jurassic transition at Kunga Island, Queen Charlotte Islands, British Columbia, Canada. ISJS Newsletter 34 (1), 2133.Google Scholar
Longridge, L. M., Carter, E. S., Smith, P. L. & Tipper, H. W. 2007 b. Early Hettangian ammonites and radiolarians from the Queen Charlotte Islands, British Columbia and their bearing on the definition of the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4), 142–69.CrossRefGoogle Scholar
Longridge, L. M., Palfy, J., Smith, P. L. & Tipper, H. W. 2008. Middle and late Hettangian (Early Jurassic) ammonites from the Queen Charlotte Islands, British Columbia, Canada. Revue de Paléobiologie 27 (1), 191248.Google Scholar
Martins, L. T., Madeira, J., Youbi, N., Munhá, J., Mata, J. & Kerrich, R. 2008. Rift-related magmatism of the Central Atlantic magmatic province in Algarve, Southern Portugal. Lithos 101 (1–2), 102–24.Google Scholar
März, C., Poulton, S. W., Beckmann, B., Küster, K., Wagner, T. & Kasten, S. 2008. Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochimica et Cosmochimica Acta 72 (15), 3703–17, doi: 10.1016/j.gca.2008.04.025.CrossRefGoogle Scholar
Marzoli, A., Jourdan, F., Puffer, J. H., Cuppone, T., Tanner, L. H., Weems, R. E., Bertrand, H., Cirilli, S., Bellieni, G. & Min, A. D. 2011. Timing and duration of the Central Atlantic magmatic province in the Newark and Culpeper basins, eastern U.S.A. Lithos 122 (3–4), 175188, doi: 10.1016/j.lithos.2010.12.013.Google Scholar
Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Bellieni, G. & Min, A. D. 1999. Extensive 200-million-year-old continental flood basalts of the Central Atlantic magmatic province. Science 284 (5414), 616–8.Google Scholar
McHone, J. G. 2003. Volatile emissions from Central Atlantic Magmatic Province basalts: mass assumptions and environmental consequences. Geophysical Monograph Series 136, 241–54.Google Scholar
McRoberts, C. A., Furrer, H. & Jones, D. S. 1997. Palaeoenvironmental interpretation of a Triassic-Jurassic boundary section from western Austria based on palaeoecological and geochemical data. Palaeogeography, Palaeoclimatology, Palaeoecology 136 (1–4), 7995.CrossRefGoogle Scholar
McRoberts, C. A., Ward, P. D. & Hesselbo, S. 2007. A proposal for the base Hettangian stage (= base Jurassic System) GSSP at New York Canyon (Nevada, USA) using carbon isotopes. International Subcommission on Jurassic Stratigraphy Newsletter 34 (1), 43–9.Google Scholar
Meyer, K. M. & Kump, L. R. 2008. Oceanic euxinia in earth history: causes and consequences. Annual Review of Earth and Planetary Sciences 36 (1), 251–88, doi: 10.1146/annurev.earth.36.031207.124256.CrossRefGoogle Scholar
Meyer, K. M., Kump, L. R. & Ridgwell, A. 2008. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36 (9), 747–50.Google Scholar
Morante, R. & Hallam, A. 1996. Organic carbon isotopic record across the Triassic-Jurassic boundary in Austria and its bearing on the cause of the mass extinction. Geology 24 (5), 391–4.2.3.CO;2>CrossRefGoogle Scholar
Mort, H. P., Adatte, T., Föllmi, K. B., Keller, G., Steinmann, P., Matera, V., Berner, Z. & Stüben, D. 2007. Phosphorus and the roles of productivity and nutrient recycling during Oceanic Anoxic Event 2. Geology 35 (6), 483–6.Google Scholar
Muttoni, G., Kent, D. V., Jadoul, F., Olsen, P. E., Rigo, M., Galli, M. T. & Nicora, A. 2010. Rhaetian magneto-biostratigraphy from the Southern Alps (Italy): constraints on Triassic chronology. Palaeogeography, Palaeoclimatology, Palaeoecology 285 (1–2), 116.Google Scholar
Nomade, S., Knight, K. B., Beutel, E., Renne, P. R., Verati, C., Féraud, G., Marzoli, A., Youbi, N. & Bertrand, H. 2007. Chronology of the Central Atlantic magmatic province: Implications for the Central Atlantic rifting processes and the Triassic-Jurassic biotic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4), 326–44.CrossRefGoogle Scholar
Ogden, D. E. & Sleep, N. H. 2012. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences 109 (1), 5962, doi: 10.1073/pnas.1118675109.Google Scholar
Olsen, P. E., Schlische, R. W. & Fedosh, M. S. 1996. 580 ky duration of the Early Jurassic flood basalt event in eastern North America estimated using Milankovitch cyclostratigraphy. The Continental Jurassic, Flagstaff: Museum of Northern Arizona Bulletin 60, 1122.Google Scholar
Ozaki, K., Tajima, S. & Tajika, E. 2011. Conditions required for oceanic anoxia/euxinia: constraints from a one-dimensional ocean biogeochemical cycle model. Earth and Planetary Science Letters 304 (1–2), 270–9.Google Scholar
Pálfy, J., Demény, A., Haas, J., Hetényi, M., Orchard, M. J. & Veto, I. 2001. Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary. Geology 29 (11), 1047–50.Google Scholar
Panchuk, K. M., Holmden, C. & Kump, L. R. 2005. Sensitivity of the epeiric sea carbon isotope record to local-scale carbon cycle processes: tales from the Mohawkian Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 228(34), 320–37.Google Scholar
Paris, G., Donnadieu, Y., Beaumont, V., Fluteau, F. & Goddéris, Y. 2012. Modeling the consequences on late Triassic environment of intense pulse-like degassing during the Central Atlantic Magmatic Province using the GEOCLIM model. Climate of the Past Discussions 8 (3), 2075–110, doi: 10.5194/cpd-8-2075-2012.Google Scholar
Pollard, D., Kump, L. R. & Zachos, J. 2013. Interactions between carbon dioxide, climate, weathering, and the Antarctic ice sheet in the earliest Oligocene. Global and Planetary Change 111, 258–67.Google Scholar
Rampino, M. R. & Caldeira, K. 2011. Comment on “Atmospheric pCO2 perturbations associated with the Central Atlantic Magmatic Province”. Science 334 (6056), 594, doi: 10.1126/science.1208653.Google Scholar
Retallack, G. & Jahren, A. 2008. Methane release from igneous intrusion of coal during Late Permian extinction events. Journal of Geology 116, 120, doi: 10.1086/524120.Google Scholar
Robbins, E. I., Wilkes, G. P. & Textoris, D. A. 1988. Coal deposits of the Newark rift system. In Triassic-Jurassic Rifting: Continental Breakup and the Origin of the Atlantic Ocean and Passive Margins, Part B (ed. Manspeizer, W.), pp. 649–82. New York: Elsevier.Google Scholar
Ruhl, M., Bonis, N. R., Reichart, G. J., Damsté, J. S. S. & Kürschner, W. M. 2011. Atmospheric carbon injection linked to End-Triassic mass extinction. Science 333 (6041), 430–4, doi: 10.1126/science.1204255.Google Scholar
Ruhl, M., Deenen, M. H. L., Abels, H. A., Bonis, N. R., Krijgsman, W. & Kürschner, W. M. 2010. Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie's Bay/East Quantoxhead, UK). Earth and Planetary Science Letters 295 (1–2), 262–76, doi: 10.1016/j.epsl.2010.04.008.Google Scholar
Ruhl, M., Kürschner, W. M. & Krystyn, L. 2009. Triassic-Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria). Earth and Planetary Science Letters 281 (3–4), 169–87.Google Scholar
Ruhl, M., Veld, H. & Kürschner, W. M. 2010. Sedimentary organic matter characterization of the Triassic-Jurassic boundary GSSP at Kuhjoch (Austria). Earth and Planetary Science Letters 292 (1–2), 1726.Google Scholar
Schaller, M. F., Wright, J. D. & Kent, D. V. 2011. Atmospheric pCO2 perturbations associated with the Central Atlantic Magmatic Province. Science 331 (6023), 1404–9.CrossRefGoogle ScholarPubMed
Schaller, M. F., Wright, J. D., Kent, D. V. & Olsen, P. E. 2012. Rapid emplacement of the Central Atlantic Magmatic Province as a net sink for CO2 . Earth and Planetary Science Letters 323, 2739.CrossRefGoogle Scholar
Schaltegger, U., Guex, J., Bartolini, A., Schoene, B. & Ovtcharova, M. 2008. Precise U–Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth and Planetary Science Letters 267 (1–2), 266–75.Google Scholar
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U. & Blackburn, T. J. 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38 (5), 387–90.Google Scholar
Scholle, P. A. & Arthur, M. A. 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones; potential stratigraphic and petroleum exploration tool. AAPG Bulletin 64 (1), 6787.Google Scholar
Shampine, L. F. & Reichelt, M. W. 1997. The Matlab Ode Suite. SIAM Journal on Scientific Computing 18 (1), 122.Google Scholar
Swart, P. K. 2008. Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle. Proceedings of the National Academy of Sciences 105 (37), 13741–5.Google Scholar
Tsandev, I., Reed, D. C. & Slomp, C. P. 2012. Phosphorus diagenesis in deep-sea sediments: Sensitivity to water column conditions and global scale implications. Chemical Geology 330–331, 127–39, doi: 10.1016/j.chemgeo.2012.08.012.Google Scholar
van Cappellen, P. & Ingall, E. D. 1994. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9 (5), 677–92.Google Scholar
van de Schootbrugge, B., Payne, J. L., Tomasovych, A., Pross, J., Fiebig, J., Benbrahim, M., Föllmi, K. B. & Quan, T. M. 2008. Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event. Geochemistry, Geophysics, Geosystems 9 (4), doi: 10.1029/2007GC001914.Google Scholar
Verati, C., Rapaille, C., Féraud, G., Marzoli, A., Bertrand, H. & Youbi, N. 2007. 40Ar/39Ar ages and duration of the Central Atlantic Magmatic Province volcanism in Morocco and Portugal and its relation to the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4), 308–25.CrossRefGoogle Scholar
Ward, P. D., Garrison, G. H., Haggart, J. W., Kring, D. A. & Beattie, M. J. 2004. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction. Earth and Planetary Science Letters 224 (3–4), 589600.Google Scholar
Ward, P. D., Garrison, G. H., Williford, K. H., Kring, D. A., Goodwin, D., Beattie, M. J. & McRoberts, C. A. 2007. The organic carbon isotopic and paleontological record across the Triassic–Jurassic boundary at the candidate GSSP section at Ferguson Hill, Muller Canyon, Nevada, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4), 281–9, doi: 10.1016/j.palaeo.2006.06.042.Google Scholar
Ward, P. D., Haggart, J. W., Carter, E. S., Wilbur, D., Tipper, H. W. & Evans, T. 2001. Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science 292 (5519), 1148–51.CrossRefGoogle ScholarPubMed
Whiteside, J. H., Olsen, P. E., Eglinton, T., Brookfield, M. E. & Sambrotto, R. N. 2010. Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proceedings of the National Academy of Sciences 107 (15), 6721–5.CrossRefGoogle Scholar
Williford, K. H., Ward, P. D., Garrison, G. H. & Buick, R. 2007. An extended organic carbon-isotope record across the Triassic-Jurassic boundary in the Queen Charlotte Islands, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 244 (1–4), 290–6.Google Scholar
Zachos, J. C. & Kump, L. R. 2005. Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene. Global and Planetary Change 47 (1), 5166.Google Scholar
Zeebe, R. E. & Wolf-Gladrow, D. 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Amsterdam: Elsevier. Elsevier Oceanography Book Series no. 65.Google Scholar
Supplementary material: File

Bachan and Payne supplementary material S1

Bachan and Payne supplementary material

Download Bachan and Payne supplementary material S1(File)
File 117.2 KB