Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T20:57:48.911Z Has data issue: false hasContentIssue false

The mineralogical modification of the chemistry of metamorphic rocks

Published online by Cambridge University Press:  01 May 2009

B. E. Leake
Affiliation:
Department of GeologyThe University Bristol

Summary

It is pointed out, with a few examples, that metamorphic rock compositions can be significantly modified by the stable mineralogy that itself may provoke metasomatic movement, as distinct from externally actuated metasomatism.

Type
Articles
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, I. & O'Neil, J. R. 1969. The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, western United States. Bull. geol. Soc. Am. 80, 1947–60.CrossRefGoogle Scholar
Challis, G. A. 1965. High-temperature contact metamorphism at the Red Hills Ultramafic intrusion—Wairau Valley—New Zealand.J.Petrology, 6, 395419.CrossRefGoogle Scholar
Coleman, R. G. & Keith, T. E. 1971. A chemical study of serpentinization—Burro Mountain, California.J.Petrology, 12, 311–28.CrossRefGoogle Scholar
Ellis, A. J. 1971. Magnesium ion concentrations in the presence of magnesium chlorite, calcite, carbon dioxide, quartz. Am. J. Sci. 271, 481–9.CrossRefGoogle Scholar
Evans, B. W. 1964. Fractionation of elements in the pelitic hornfelses of the Cashel—Lough Wheelaun intrusion, Connemara, Eire. Geochim. cosmochim. Acta 28, 127–56.CrossRefGoogle Scholar
Forbes, R. B. 1965. The comparative chemical composition of eclogite and basalt. J. geophys. Res. 70, 1515–21.CrossRefGoogle Scholar
Heier, K. S. 1963. Uranium, thorium and potassium in eclogite rocks. Geochim.cosmochim Acta 27, 849–60.CrossRefGoogle Scholar
Jackson, E. D. 1961. Primary textures and mineral associations in the Ultramafic Zone of the Stillwater Complex, Montana. U.S. geol. Surv. Prof. Paper 358, 1106.Google Scholar
Jaffe, H. W. 1951. The role of yttrium and other minor elements in the garnet group. Am. Miner. 36, 133–56.Google Scholar
Leake, B. E. 1970. The origin of the Connemara migmatites of the Cashel district, Connemara, Ireland. Q. Jl geol. Soc. Lond. 125, 219–76.CrossRefGoogle Scholar
Morris, D. F. C. & Short, E. L. 1969. Rhenium, In Wedepohl, K. H. (Ed.): Handbook of Geochemistry, II/1, Springer-Verlag, Berlin.Google Scholar
Philpotts, J. A. & Schnetzler, C. C. 1970. Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochim. cosmochim. Acta 34, 307–22.CrossRefGoogle Scholar
Reynolds, R. C., Witney, P. R. & Isachsen, Y. W. 1969. K/Rb ratios in Adirondack metanorthosites and associated charnockitic rocks and their petrogenetic implications. In The Origin of Anorthosite and related rocks. Mem. N. Y. State Mus. Sci. Serv. 18, 267–80.Google Scholar
Sharfman, V. S. 1969. Average chemical properties of spilites. Dokl. (Proc.) Acad. Sci. U.S.S.R. Earth Sci. Sect. 180, 164–5.Google Scholar
Shaw, D. M. 1956. Geochemistry of pelitic rocks. Part II: Major elements and general geochemistry. Bull. geol. Soc. Am. 67, 919–34.CrossRefGoogle Scholar
Taylor, H. P. & Forester, R. W. 1971. Low-O18 igneous rocks from the intrusive complexes of Skye, Mull and Ardnamurchan, western Scotland. J.Petrology 12, 465–99.CrossRefGoogle Scholar
Vallance, T. G. 1965. On the chemistry of pillow lavas and the origin of spilites. Mineralog. Mag. 34, 471–81.Google Scholar
Vallance, T. G. 1969. Spilites again: some consequences of the degradation of basalts. Proc. Linn. Soc. N.S.W. 94, 851.Google Scholar
Van Moort, J.C. 1972. The magnesium and calcium contents of sediments especially pelites, as a function of age and metamorphism. Chem. Geol. (in press).CrossRefGoogle Scholar
Yoder, H. S. & Keith, M. L. 1951. Complete substitution of aluminium for silicon: the system 3MnO Al2O33SiO2—3Y2O35Al2O3. Am. Miner. 36, 519–33.Google Scholar