Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T00:32:45.778Z Has data issue: false hasContentIssue false

Middle Neoproterozoic syn-rifting volcanic rocks in Guangfeng, South China: petrogenesis and tectonic significance

Published online by Cambridge University Press:  08 April 2008

WU-XIAN LI
Affiliation:
Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
XIAN-HUA LI*
Affiliation:
Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
ZHENG-XIANG LI
Affiliation:
Institute of Geoscience Research, Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
*
Author for corresponence: [email protected]

Abstract

Middle Neoproterozoic igneous rocks are widespread in South China, but their petrogenesis and tectonic implications are still highly controversial. The Guangfeng middle Neoproterozoic volcano-sedimentary succession was developed on a rare Sibaoan metamorphic basement (the Tianli Schists) in the southeastern Yangtze Block, South China. This paper reports geochronological, geochemical and Nd isotopic data for the volcanic rocks in this succession. The volcanic rocks consist of alkaline basalts, andesites and peraluminous rhyolites. SHRIMP U–Pb zircon age determinations indicate that they were erupted at 827±14 Ma, coeval with a widespread episode of anorogenic magmatism in South China. Despite showing Nb–Ta depletion relative to La and Th, the alkaline basalts are characterized by highly positive ɛNd(T) values (+3.1 to +6.0), relatively high TiO2 and Nb contents and high Zr/Y and super-chondritic Nb/Ta ratios, suggesting their derivation from a slab melt-metasomatized subcontinental lithospheric mantle source in an intracontinental rifting setting. The andesites have significantly negative ɛNd(T) values (−9.3 to −11.1) and a wide range of SiO2 contents (57.6–65.6%). They were likely generated by the mixing of fractionated basaltic melts with felsic melts derived from the Archaean metasedimentary rocks in the middle to lower crust. The rhyolites are highly siliceous and peraluminous. They are characterized by depletion in Nb, Ta, Sr, P and Ti and relatively high ɛNd(T) values (−3.0 to −4.8), broadly similar to those of the adjacent c. 820 Ma peraluminous granitoids derived from the Mesoproterozoic to earliest Neoproterozoic sedimentary source at relatively shallow levels. We conclude that the Guangfeng volcanic suite is a magmatic response of variant levels of continental lithosphere (including lithospheric mantle and the lower-middle to upper crust) to the middle Neoproterozoic intracontinental rifting possibly caused by mantle plume activity.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beard, J. S. & Lofgren, G. E. 1991. Dehydration melting and water saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb. Journal of Petrology 32, 365401.CrossRefGoogle Scholar
Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.CrossRefGoogle Scholar
Brenan, J. M., Shaw, H. F., Phinney, D. L. & Ryerson, F. J. 1994. Rutile–aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in islandarc basalts. Earth and Planetary Science Letters 128, 327–39.CrossRefGoogle Scholar
Chen, J. F. & Jahn, B. M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 284, 101–33.CrossRefGoogle Scholar
Cumming, G. L. & Richards, J. R. 1975. Ore lead isotope ratios in a continuously changing earth. Earth and Planetary Science Letters 28, 155–71.CrossRefGoogle Scholar
Gao, S., Ling, W. L., Qiu, Y. M., Zhou, L., Hartmann, G. & Simon, K. 1999. Contrasting geochemical and Sm–Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze Craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexia. Geochimica et Cosmochimica Acta 63, 2071–88.CrossRefGoogle Scholar
Gibson, S. A., Kirkpatrick, R. J., Emmerman, R., Schmincke, P.-H., Pritchard, G., Okay, P. J., Thorpe, R. S. & Marriner, G. F. 1982. The trace element composition of the lavas and dykes from a 3 km vertical section through a lava pile of Eastern Iceland. Journal of Geophysical Research 87, 6532–46.CrossRefGoogle Scholar
Green, T. H. & Pearson, N. J. 1987. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochimica et Cosmochimica Acta 51, 5562.CrossRefGoogle Scholar
Greentree, M. R., Li, Z. X., Li, X. H. & Wu, H. 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Research 151, 79100.CrossRefGoogle Scholar
Guan, T. & Yu, D. 1993. Characteristics and geological significance on the strata section of earlier late Proterozoic era in Guangfeng area of Jiangxi. Journal of East China Geological Institute 16 (4), 385–94 (in Chinese with English abstract).Google Scholar
Harry, D. L. & Leeman, W. P. 1995. Partial melting of melt metasomatized subcontinental mantle and magma source potential of the lower lithosphere. Journal of Geophysical Research 100, 10255–69.CrossRefGoogle Scholar
Hawkesworth, C., Turner, S., Gallagher, K., Hunter, A., Bradshaw, T. & Rogers, N. 1995. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. Journal of Geophysical Research 100, 10271–86.CrossRefGoogle Scholar
Keppler, H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380, 237–40.CrossRefGoogle Scholar
Li, W. X. & Li, X. H. 2003. Adakitic granites within the NE Jiangxi ophiolites, South China: geochemical and Nd isotopic evidence. Precambrian Research 122, 2944.CrossRefGoogle Scholar
Li, W. X., Li, X. H. & Li, Z. X. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research 136, 5166.CrossRefGoogle Scholar
Li, X. H. 1997. Timing of the Cathaysia block formation: constraints from SHRIMP U–Pb zircon geochronology. Episodes 20, 188–92.CrossRefGoogle Scholar
Li, X. H. 1999. U–Pb zircon ages of granites from the southern margin of the Yangtze block: Timing of the Neoproterozoic Jinning orogeny in SE China and implications for Rodinia. Precambrian Research 97, 4357.CrossRefGoogle Scholar
Li, X. H., Li, Z. X., Ge, W., Zhou, H., Li, W. X., Liu, Y. & Wingate, M. T. D. 2003 a. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at 825 Ma? Precambrian Research 122, 4583.CrossRefGoogle Scholar
Li, X. H., Li, Z. X., Sinclair, J. A., Li, W. X. & Carter, G. 2006. Revisiting the “Yanbian Terrane”: Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Research 151, 1430.CrossRefGoogle Scholar
Li, X. H., Li, Z. X., Sinclair, J. A., Li, W. X. & Carter, G. 2007 a. Reply to the comment by Zhou et al. on: “Revisiting the ‘Yanbian Terrane’: Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China”. Precambrian Research 155, 318–23.CrossRefGoogle Scholar
Li, X. H., Li, Z. X., Sinclair, J. A., Li, W. X. & Carter, G. 2007 b. Understanding dual geochemical characters in a geological context for the Gaojiacun intrusion: Response to Munteanu and Yao's discussion. Precambrian Research 155, 328–32.Google Scholar
Li, X. H., Li, Z. X., Zhou, H., Liu, Y. & Kinny, P. D. 2002 a. U–Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Research 113, 135–54.CrossRefGoogle Scholar
Li, X. H., Liu, D. Y., Sun, M., Li, W. X., Liang, X. R. & Liu, Y. 2004. Precise Sm–Nd and U–Pb isotopic dating of the super-giant Shizhuyuan polymetallic deposit and its host granite, Southeast China. Geological Magazine 141, 225–31.CrossRefGoogle Scholar
Li, X. H. & McCulloch, M. T. 1996. Secular variation in the Nd isotopic composition of Neoproterozoic sediments from the southern margin of the Yangtze Block: evidence for a Proterozoic continental collision in southeast China. Precambrian Research 76, 6776.CrossRefGoogle Scholar
Li, X. H., Qi, C. S., Liu, Y., Liang, X. R., Tu, X. L., Xie, L. W. & Yang, Y. H. 2005. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: new constraints from Hf isotopes and Fe/Mn ratios. Chinese Science Bulletin 50, 2481–6.CrossRefGoogle Scholar
Li, X. H., Sun, M., Wei, G. J., Liu, Y., Lee, C. Y. & Malpas, J. G. 2000. Geochemical and Sm–Nd isotopic study of amphibolites in the Cathaysia block, SE China: evidence for extremely depleted mantle in the Paleoproterozoic. Precambrian Research 102, 251–62.CrossRefGoogle Scholar
Li, Z. X. & Li, X. H. 2007. Formation of the 1300 km-wide intra-continental orogen and post-orogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 35, 179–82.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Kinny, P. D. & Wang, J. 1999. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth and Planetary Science Letters 173, 171–81.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Kinny, P. D., Wang, J., Zhang, S. & Zhou, H. 2003 b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research 122, 85109.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Zhou, H. & Kinny, P. D. 2002 b. Grenville-aged continental collision in South China: new SHRIMP U–Pb zircon results and implications for Rodinia configuration. Geology 30, 163–6.2.0.CO;2>CrossRefGoogle Scholar
Li, Z. X., Wang, J., Li, X. H. & Zhang, S. H. 2003 c. From Sibao orogenesis to Nanhua rifting: late Precambrian tectonic history of eastern South China – an overview and field guide. Beijing: Geological Publishing House, 100 pp.Google Scholar
Li, Z. X., Wartho, J. A., Occhipinti, S., Zhang, C. L., Li, X. H., Wang, J. & Bao, C. 2007 c. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia: new mica 40Ar/39Ar dating and SHRIMP U–Pb detrital zircon provenance constraints. Precambrian Research 159, 7994.CrossRefGoogle Scholar
Lin, G. C., Li, X. H. & Li, W. X. 2007. SHRIMP U–Pb zircon age, geochemistry and Nd–Hf isotope of Neoproterozoic mafic dyke swarms in western Sichuan: Petrogenesis and tectonic significance. Science in China Series D 50, 116.CrossRefGoogle Scholar
Ling, W., Gao, S., Zhang, B., Li, H., Liu, Y. & Cheng, J. 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze Craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Research 122, 111–40.CrossRefGoogle Scholar
McCulloch, M. T. & Gamble, J. A. 1991. Geochemical and geodynamical conatraints on subduction zone magmatism. Earth and Planetary Science Letters 102, 358–74.CrossRefGoogle Scholar
Miller, C. F., McDowell, S. M. & Mapes, R. W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31, 529–32.2.0.CO;2>CrossRefGoogle Scholar
Morris, G. A., Larson, P. B. & Hooper, P. R. 2000. “Subduction style” magmatism in a non-subduction setting: the Colville Igneous Complex, NE Washington State, USA. Journal of Petrology 41, 4367.CrossRefGoogle Scholar
Münker, C. 1998. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: source constraints and application of refined ICPMS techniques. Chemical Geology 144, 2345.CrossRefGoogle Scholar
Münker, C., Wörner, G., Yogodzinski, G. & Churikova, T. 2004. Behaviour of high field strength elements in subduction zones: constraints from Kamchatka–Aleutian arc lavas. Earth and Planetary Science Letters 224, 275–93.CrossRefGoogle Scholar
Munteanu, M. & Yao, Y. 2007. The Gaojiacun intrusion: Rift- or subduction-related?: Comment on “Revisiting the ‘Yanbian Terrane’: Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China” by Li et al. (2006). Precambrian Research 155, 324–7.CrossRefGoogle Scholar
Nelson, D. R. 1997. Compilation of SHRIMP U–Pb zircon geochronology data, 1996. Geological Survey of Western Australia Record 1997/2. Perth: Geological Survey of Western Australia, 189 pp.Google Scholar
Pearce, J. A. & Cann, J. R. 1973. Tectonic setting of basaltic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19, 290300.CrossRefGoogle Scholar
Qiu, Y. M., Gao, S., McNaughton, N. J., Groves, D. I. & Ling, W. L. 2000. First evidence of >3.2 Ga continental crust in the Yangtze Craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 28, 1114.2.0.CO;2>CrossRefGoogle Scholar
Rollinson, H. 1993. Using geochemical data: evaluation, presentation, interpretation. Singapore: John Wiley & Sons Inc., 352 pp.Google Scholar
Romer, R. L., Forster, H.-J. & Breitkreuz, C. 2001. Intracontinental extensional magmatism with a subduction fingerprint: the late Carboniferous Halle Volcanic Complex (Germany). Contributions to Mineralogy and Petrology 141, 201–21.CrossRefGoogle Scholar
Rudnick, R. L. & Fountain, D. M. 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics 33, 267309.CrossRefGoogle Scholar
Stolz, A. J., Jochum, K. P., Spettel, B. & Hofmann, A. W. 1996. Fluid- and melt-related enrichment in the subarc mantle: evidence from Nb/Ta variations in island-arc basalt. Geology 24, 587–90.2.3.CO;2>CrossRefGoogle Scholar
Sun, S.-S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Sylvester, P. J. 1998. Post-collisional strongly peraluminous granites. Lithos 45, 2944.CrossRefGoogle Scholar
Tanaka, T. and 19 co-authors, . 2000. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology 168, 279–81.CrossRefGoogle Scholar
Vermeesch, P. 2006. Tectonic discrimination of basalts with classification trees. Geochimica et Cosmochimica Acta 70, 1839–48.CrossRefGoogle Scholar
Wang, J. & Gao, Y. 2003. Sedimentary evolution of the Guangfeng Neoproterozoic rift sub-basin, northeastern Jiangxi, South China. IGCP 440 South China Field Symposium Abstract, pp. 52–4.Google Scholar
Wang, J., Li, X. H., Duan, T. Z., Liu, D. Y., Song, B., Li, Z. & Gao, Y. 2003. Zircon SHRIMP U–Pb dating for the Cangshuipu volcanic rocks and its implications for the lower boundary age of the Nanhua strata in South China. Chinese Science Bulletin 48, 1663–9.CrossRefGoogle Scholar
Wang, J. & Li, Z. X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia breakup. Precambrian Research 122, 141–58.CrossRefGoogle Scholar
Wang, X. L., Zhou, J. C., Qiu, J. S. & Gao, J. F. 2004. Geochemistry of the Meso- to Neoproterozoic basic–acid rocks from Hunan Province, South China: implications for the evolution of the western Jiangnan orogen. Precambrian Research 135, 79103.CrossRefGoogle Scholar
Wang, X. L., Zhou, J. C., Qiu, J. S., Zhang, W. L., Liu, X. M. & Zhang, G. L. 2006. LA-ICP-MS U–Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: implications for tectonic evolution. Precambrian Research 145, 111–30.CrossRefGoogle Scholar
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295304.CrossRefGoogle Scholar
Williams, I. S. 1998. U–Th–Pb geochronology by ion microprobe. Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Review of Economic Geology 7, 135.Google Scholar
Wingate, M. T. D., Campbell, I. H., Compston, W. & Gibson, G. M. 1998. Ion microprobe U–Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambrian Research 87, 135–59.CrossRefGoogle Scholar
Wu, R. X., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Zhang, S. B., Liu, X. M. & Wu, F. Y. 2006. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research 146, 179212.CrossRefGoogle Scholar
Xiong, X. L., Adam, J. & Green, T. H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chemical Geology 218, 339–59.CrossRefGoogle Scholar
Xiong, X. L. 2006. Trace element evidence for growth of earth continental crust by melting of rutile-bearing hydrous eclogite. Geology 34, 945–8.CrossRefGoogle Scholar
Xiong, X. L., Xia, B., Xu, J. F., Niu, H. C. & Xiao, W. S. 2006. Na depletion in modern adakites via melt/rock reaction within the sub-arc mantle. Chemical Geology 229, 273–92.CrossRefGoogle Scholar
Ye, M. F., Li, X. H., Li, W. X., Liu, Y. & Li, Z. X. 2007. SHRIMP zircon U–Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research 12, 144–56.CrossRefGoogle Scholar
Zhang, L. M., Yan, Y. K. & Yan, Y. Z. 1991. Microplant species of Guangfeng Group in the NE Jiangxi province: Discovery and significance. Journal of Stratigraphy 15, 263–9 (in Chinese with English abstract).Google Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006 a. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China. Precambrian Research 146, 1634.CrossRefGoogle Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S., Wu, F. Y., 2006 b. Zircon U–Pb age and Hf–O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research 151, 265–88.CrossRefGoogle Scholar
Zhao, J. X., Malcolm, M. T. & Korsch, R. J. 1994. Characterisation of a plume-related ~800 Ma magmatic event and its implications for basin formation in central-southern Australia. Earth and Planetary Science Letters 121, 349–67.CrossRefGoogle Scholar
Zheng, J., Griffin, W. L., O'Reilly, S. Y., Zheng, M., Pearson, N. & Pan, Y. 2006. Widespread Archean basement beneath the Yangtze craton. Geology 34, 417–20.CrossRefGoogle Scholar
Zhou, C. M., Tucker, R., Xiao, S., Peng, Z., Yuan, X. & Chen, Z. 2004. New constraints on the ages of Neoproterozoic glaciations in south China. Geology 32, 437–40.CrossRefGoogle Scholar
Zhou, H., Li, X. H., Wang, H., Li, J. & Li, H. 2002 as. U–Pb zircon geochronology of basic volcanic rocks within the Yingyangguan Group in Hezhou, Guangxi, and its tectonic implications. Geology Review 48 (Suppl.), 22–5 (in Chinese with English abstract).Google Scholar
Zhou, M. F., Kennedy, A. K., Sun, M., Malpas, J. & Lesher, C. M. 2002 b. Neoproterozoic arc-related mafic intrusions along the northern margin of South China: implications for the accretion of Rodinia. Journal of Geology 110, 611–18.CrossRefGoogle Scholar
Zhou, M. F., Yan, D. P., Kennedy, A. K., Li, Y. & Ding, J. 2002 c. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters 196, 5167.CrossRefGoogle Scholar
Zhou, M. F., Ma, Y., Yan, D. P., Xia, X., Zhao, J. H. & Sun, M. 2006 a. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Research 144, 1938.CrossRefGoogle Scholar
Zhou, M. F., Yan, D. P., Wang, C. L., Xia, X., Zhao, J. H. & Sun, M. 2006 b. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China. Earth and Planetary Science Letters 248, 271–85.CrossRefGoogle Scholar
Zhou, J. B., Li, X. H., Ge, W. C. & Li, Z. X. 2007. Age and origin of Middle Neoproterozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia. Gondwana Research 12, 184–97.CrossRefGoogle Scholar