Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T18:10:05.989Z Has data issue: false hasContentIssue false

Microfossil-based biostratigraphy of the Precambrian Hecla Hoek sequence, Nordaustlandet, Svalbard

Published online by Cambridge University Press:  01 May 2009

A. H. Knoll
Affiliation:
Department of Geology, Oberlin College, Oberlin, Ohio 44074, U.S.A.

Summary

The Precambrian Murchisonfjorden Supergroup of Nordaustlandet, Svalbard, contains approximately 6000 m of folded, but essentially unmetamorphosed, shallow marine sedimentary rocks. The abundant microfossils found through much of the section allow confident biostratigraphic subdivision of the succession and correlation with contemporaneous sequences in East Greenland and Scandinavia.

Diamictite-bearing rocks of the Gotia Group (uppermost in the sequence) contain a depauperate assemblage of acritarchs dominated by Bavlinella Javeolata. A Vendian age of deposition is indicated. Carbonates of the immediately underlying Ryssö Formation contain a wide variety of microfossils including stromatolitic associations of several types, planktonic acritarchs, and, near the top of the formation, vase-shaped heterotrophic protists. The acritarchs, including Chuaria circularis, Kildinella hyperboreica, K. sinica, Trachysphaeridium spp., and others, and the protistan remains indicate a latest Riphean age. The underlying Hunnberg Formation is similarly fossiliferous. A typically Late Riphean acritarch suite is present, and in addition double-walled forms and large (500 μm), thick-walled spheroids bearing club-shaped 10 μm diameter spines are found. Thus, it appears that the entire carbonate sequence of the Roaldtoppen Group was deposited late in Late Riphean time.

The thick detrital succession comprising the lowermost part of the unmetamorphosed Nordaustlandet sequence, the Celsiusberget and Franklinsundet groups, contains fossils at various levels. Although microfossils are often somewhat coalified, identifiable Late Riphean taxa such as Chuaria circularis and Kildinella spp. are present in rocks as low as the middle Westmanbukta Formation. The presence of the distinctive carbonaceous macrofossil Tawuia dalensis in the Kapp Lord Formation permits an age estimate of 850–900 Ma for this formation.

All told, the entire Murchisonfjorden Supergroup of Nordaustlandet appears to have been deposited during the Late Riphean and Vendian intervals. The long-recognized lithostratigraphic parallels between this sequence and the Eleonore Bay and Tillite Groups of East Greenland are complemented by strong biostratigraphic similarities.

Type
Articles
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Flood, B., Gee, D. G., Hjelle, A., Siggerud, T. & Winsnes, T. S. 1969. The geology of Nordaustlandet, northern and central parts, Norsk Polarinst. Skr. 146, 1139.Google Scholar
Hadley, J. B. 1970. The Ocoee Series and its possible correlatives. In Studies of Appalachian Geology, Central and Southern (eds. Fisher, G. W..), pp. 247–59. New York: Wiley Interscience.Google Scholar
Harland, W. B. 1959. The Caledonian sequence in Ny Friesland, Spitsbergen J. geol. Soc. Lond. 116, 307–42.Google Scholar
Harland, W. B. & Gayer, R. A. 1972. The Arctic Caledonides and earlier oceans geol. Mag. 109, 289384.CrossRefGoogle Scholar
Harland, W. B. & Herod, K. N. 1975. Glaciations through time. In Ice Ages: Ancient and Modern (eds. Wright, A. E. and Moseley, F.), pp. 189216, Liverpool: Seel House Press.Google Scholar
Harland, W. B. & Wilson, C. B. 1956. The Hecla Hoek succession in Ny Friesland, Spitsbergen Geol. Mag. 93, 265–86.CrossRefGoogle Scholar
Harland, W. B. & Wright, N. J. R. 1979. Alternative hypothesis for the pre-Carboniferous evolution of Svalbard Skr. norsk Polarinst. 167, 89117.Google Scholar
Hofmann, H. J. & Aitken, J. D. 1979. Precambrian biota from the Little Dal Group, Mackenzie Mountains, northwestern Canada, Can. J. Earth Sci. 16, 150–66.Google Scholar
James, N. P. 1979. Shallowing-upward sequences in carbonates. In Facies Models (ed. Walker, R. G.), pp. 109–19. Toronto: Geol. Assoc. Canada.Google Scholar
Knoll, A. H. 1981 a. Micro-organisms from the late Precambrian Draken Conglomerate, Ny Friesland, Spitsbergen. J. Paleontol. (In the press).Google Scholar
Knoll, A. H. 1981 b. Microbiotas of the late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard. J. Paleontol. (In the press).Google Scholar
Knoll, A. H., Blick, N. & Awramik, S. M. 1981. Stratigraphic and ecologic implications of late Precambrian microfossils from Utah Amer. J. Sci. 281, 247–63.CrossRefGoogle Scholar
Knoll, A. H. & Calder, S. 1982. Microbiota of the Upper Proterozoic Ryssö Formation, Nordaustlandet, Svalbard. (In prep.)Google Scholar
Knoll, A. H. & Keller, F. 1979. Late Precambrian microfossils from the Walden Creek Group, Ocoee Supergroup. eastern Tennessee. Abstr. Programs geol. Soc. Am. 11, (4), 185.Google Scholar
Knoll, A. H. & Vidal, G. 1981. Late Proterzoic vase-shaped microfossils from the Visingsö Beds, Sweden Geol. För. Stock. Förh. 102, 207–11.CrossRefGoogle Scholar
Koch, L. 1929. Stratigraphy of Greenland Meddr. Grøland. 73, 205320.Google Scholar
Kulling, O. 1934. Scientific results of the Swedish-Norwegian Arctic Expedition in the summer of 1931. Part XI: The ‘Hecla Hoek Formation’ round Hinlopenstredet. Geogr. Annlr, Stockh. 16(4), 161254.Google Scholar
Milstein, V. E. & Golovanov, N. P. 1979. Upper Precambrian micro-phytolites and stromatolites from Svalbard Skr. norsk Polarinst. 167, 219224.Google Scholar
Moorman, M. 1974. Microbiota of the Late Proterozoic Hector Formation, southwestern Alberta, Canada J. Paleontol. 48, 524–39.Google Scholar
Nordenskiöld, A. E. 1863. Geografisk och geognostisk beskrifning öfver nordöstra delarne of Spetsbergen och Hinlopen Strait. K svenska Vetensk. Akad. Handl. Stockh. 4 (7), 125.Google Scholar
Orvin, A. K. 1940. Outline of the geological history of Spitsbergen Skr. Svalbard Ishavet 78, 157.Google Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, late Precambrian, central Australia J. Paleontol. 42, 651–88.Google Scholar
Strand, T. & Kulling, O. 1972. Scandinavian Caledonides. New York: Wiley Interscience.Google Scholar
Timofeev, B. V. 1959. Drevneishaya flora Pribaltiki i ee stratigraficheskoe znachenie. Trudy vses. neft. nauch. geol. inst. (VNIGRI), 129.Google Scholar
Vidal, G. 1976 a. Late Precambrian microfossils from the Visingsö Beds in southern Sweden Fossils and Strata. 9, 157.Google Scholar
Vidal, G. 1976(b). Late Precambrian acritarchs from the Eleonore Bay Group and Tillite Group in East Greenland. Rapp. Grønlands geol. Unders. 78, 119.Google Scholar
Vidal, G. 1979(a). Acritarchs and the correlation of the Upper Proterozoic. Publ. Inst. Mineral. Palaeontol. Quat. Geol., Univ. Lund, 219, 122Google Scholar
Vidal, G. 1979(b). Acritarchs from the Upper Proterozoic and Lower Cambrian of East Greenland, Bull. Grønlands geol. Unders. 134, 155.CrossRefGoogle Scholar
Vidal, G. 1981. Micropaleontology and biostratigraphy of the Upper Proterozoic and Lower Cambrian sequence in East Finmark, Northern Norway Norg. geol. Unders. 362, 153.Google Scholar
Vidal, G. & Knoll, A. H. 1981. Proterozoic plankton. Geol. Soc. America Mem. (In the press).Google Scholar
Walter, M. R. 1977. Interpreting stromatolites Amer. Sci. 65, 563–71.Google Scholar