Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T19:30:18.611Z Has data issue: false hasContentIssue false

Metamorphism and diachronous cooling in a contractional orogen: the Strandja Massif, NW Turkey

Published online by Cambridge University Press:  19 January 2011

G. SUNAL*
Affiliation:
Universität Tübingen, Institut für Geowissenschaften, Wilhelmstrasse 56, D-72074 Tübingen, Germany İstanbul Teknik Üniversitesi, Jeoloji Mühendisliği Bölümü, TR-34469 Maslak, Istanbul, Turkey
M. SATIR
Affiliation:
Universität Tübingen, Institut für Geowissenschaften, Wilhelmstrasse 56, D-72074 Tübingen, Germany
B. A. NATAL'IN
Affiliation:
İstanbul Teknik Üniversitesi, Jeoloji Mühendisliği Bölümü, TR-34469 Maslak, Istanbul, Turkey
G. TOPUZ
Affiliation:
İstanbul Teknik Üniversitesi, Avrasya Yerbilimleri Enstitüsü, TR-34469 Maslak, Istanbul, Turkey
O. VONDERSCHMIDT
Affiliation:
Universität Tübingen, Institut für Geowissenschaften, Wilhelmstrasse 56, D-72074 Tübingen, Germany
*
Author for correspondence: [email protected]

Abstract

The southern part of the Strandja Massif, northern Thrace, Turkey, comprises a basement of various gneisses, micaschists and rare amphibolite, and a cover of metaconglomerate and metasandstone, separated from each other by a pre-metamorphic unconformity. Metamorphic grade decreases from the epidote–amphibolite facies in the south to the albite–epidote–amphibolite/greenschist-facies transition in the north. Estimated PT conditions are 485–530°C and 0.60–0.80 GPa in the epidote–amphibolite facies domain, and decrease towards the transitional domain between greenschist- and epidote–amphibolite facies. Rb–Sr muscovite ages range from 162.9 ± 1.6 Ma to 149.1 ± 2.1 Ma, and are significantly older (279–296 Ma) in the northernmost part of the study area. The Rb–Sr biotite ages decrease from 153.9 ± 1.5 Ma in the south to 134.4 ± 1.3 Ma in the north. These age values in conjunction with the attained temperatures suggest that the peak metamorphism occurred at around 160 Ma and cooling happened diachronously, and Rb–Sr muscovite ages were not reset during the metamorphism in the northernmost part. Structural features such as (i) consistent S-dipping foliation and SW to SE-plunging stretching lineation, (ii) top-to-the-N shear sense, and (iii) N-vergent ductile shear zones and brittle thrusts suggest a N-vergent compressional deformation coupled with exhumation. We tentatively ascribe this metamorphism and subsequent diachronous cooling to the northward propagation of a thrust slice. The compressional events in the Strandja Massif were most probably related to the coeval N-vergent subduction/collision system in the southerly lying Rhodope Massif.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, A. J. 1990. Introduction to Metamorphic Textures and Microstructures. New York: Blackie, 162 pp.Google Scholar
Bauer, C., Rubatto, D., Krenn, K., Proyer, A. & Hoınkes, G. 2007. A zircon study from the Rhodope Metamorphic Complex, N-Greece: time record of a multistage evolution. Lithos 99, 207–28.CrossRefGoogle Scholar
Berman, R. G. 1990. Mixing properties of Ca-Mg-Fe-Mn garnets. American Mineralogist 75, 328–44.Google Scholar
Bertrand, G., Rangin, C., Maluski, H. & Bellon, H. 2001. Diachronous cooling along the Mogok Metamorphic Belt (Shan Scarp, Myanmar): the trace of the northward migration of the Indian syntaxis. Journal of Southeast Asian Earth Sciences 1, 649–59.CrossRefGoogle Scholar
Bonev, N., Marchev, P. & Singer, B. 2006. 40Ar/39Ar geochronology constraints on the Middle Tertiary basement extensional exhumation, and its relation to ore-forming and magmatic processes in the eastern Rhodope (Bulgaria). Geodinamica Acta 19, 267–82.CrossRefGoogle Scholar
Bonev, N., Moritz, R., Márton, I., Chiaradia, M. & Marchev, P. 2010. Geochemistry, tectonics, and crustal evolution of basement rocks in the Eastern Rhodope Massif, Bulgaria. International Geology Review 52 (23), 269–97.CrossRefGoogle Scholar
Boyle, A. P., Burton, K. W. & Westhead, R. K. 1994. Diachronous burial and exhumation of a single tectonic unit during collision orogenesis (Sulitjelma, central Scandinavian Caledonides). Geology 22, 1043–6.2.3.CO;2>CrossRefGoogle Scholar
Burg, J. P., Ricou, L. E., Ivanov, Z., Godfriaux, I., Dimov, D. & Klain, L. 1996. Syn-metamorphic nappe complex in the Rhodope Massif: structure and kinematics. Terra Nova 8, 615.CrossRefGoogle Scholar
Çağlayan, A. M., Şengün, M. & Yurtsever, A. 1988. Main fault systems shaping the Istranca Massif, Turkey. Journal of Pure and Applied Science, Series A, Geosciences. 21, 145–54.Google Scholar
Carrigan, C. W., Mukasa, S. B., Haydoutov, I. & Kolcheva, K. 2005. Age of Variscan magmatism from the Bulgarian sector of the orogen. Lithos 82, 125–47.CrossRefGoogle Scholar
Chatalov, G. 1988. Recent developments in the geology of the Strandja Zone in Bulgaria. Bulletin of the Technical University of Istanbul 41, 433–66.Google Scholar
Chatalov, A. G. 1991. Triassic in Bulgaria – a review. Special issue on tectonics (ed. Dewey, J. F.). Bulletin of the Technical University of Istanbul 44 (1–2), 103–35.Google Scholar
Cherneva, Z. & Georgieva, M. 2005. Metamorphozed Hercynian granitoids in the Alpine structures of the Central Rhodope, Bulgaria: geotectonic position and geochemistry. Lithos 82, 149–68.CrossRefGoogle Scholar
Crowley, J. L. & Parrish, R. R. 1999. U-Pb isotopic constraints on diachronous metamorphism in the northern Monashee complex, southern Canadian Cordillera. Journal of Metamorphic Geology 17, 483502.CrossRefGoogle Scholar
Dallmeyer, R. D., Martínez Catalán, J. R., Arenas, R., Gil Ibarguchi, J. I., Gutiérrez Alonso, G., Farias, P., Bastida, F. & Aller, J. 1997. Diachronous Variscan tectonothermal activity in the NW Iberian Massif: evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 277, 307–37.CrossRefGoogle Scholar
Del Moro, A., Puxeddu, M., Radıcatı Dı Brozolo, F. & Vılla, I. M. 1982. Rb–Sr and K–Ar ages on minerals at temperatures of 300°–400 °C from deep wells in the Larderello geothermal field (Italy). Contributions to Mineralogy and Petrology 81, 340–9.CrossRefGoogle Scholar
Dodson, M. H. 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology 40, 259–74.CrossRefGoogle Scholar
Ferry, J. M. & Spear, F. S. 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology 66, 113–17.CrossRefGoogle Scholar
Freeman, S. R., Inger, S., Butler, R. W. H. & Cliff, R. A. 1997. Dating deformation using Rb-Sr in white micas: greenschist facies deformation ages for the Entrelor Shear Zone, Italian Alps. Tectonics 16, 5776.CrossRefGoogle Scholar
Gerdjikov, I. 2005. Alpine metamorphism and granitoid magmatism in the Strandja zone: new data from the Sakar unit, SE Bulgaria. Turkish Journal of Earth Sciences 14, 167–83.Google Scholar
Gerdjıkov, I. & Gautier, P. 2005. Early alpine orogeny as recorded in metamorphic complexes of Southern Bulgaria. EGU05-A-11126. Geophysical Research Abstracts 7, 11126.Google Scholar
Giletti, B. J. 1991. Rb and Sr diffusion in alkali feldspars, with implications for cooling histories of rocks. Geochimica et Cosmochimica Acta 55, 1331–43.CrossRefGoogle Scholar
Glodny, J., Austrheim, H., Molina, J. F., Rusin, A. & Seward, D. 2003. Rb/Sr record of fluid–rock interaction in eclogites: the Marun-Keu complex, Polar Urals, Russia. Geochimica et Cosmochimica Acta 67, 4353–71.CrossRefGoogle Scholar
Glodny, J., Kühn, A. & Austrheim, H. 2008. Diffusion versus recrystallization processes in Rb–Sr geochronology: isotopic relics in eclogite facies rocks, Western Gneiss Region, Norway. Geochimica et Cosmochimica Acta 72, 506–25.CrossRefGoogle Scholar
Glodny, J., Ring, U., Kühn, A., Gleissner, P. & Franz, G. 2005. Crystallization and very rapid exhumation of the youngest Alpine eclogites (Tauern Window, Eastern Alps) from Rb/Sr mineral assemblage analysis. Contributions to Mineralogy and Petrology 149, 699712.CrossRefGoogle Scholar
Gray, D. R., Foster, D. A., Goscombec, B., Passchier, C. W. & Trouwe, R. A. J. 2006. 40Ar/39Ar thermochronology of the Pan-African Damara Orogen, Namibia, with implications for tectonothermal and geodynamic evolution. Precambrian Research 150, 4972.CrossRefGoogle Scholar
Hagdorn, H. & Göncüoglu, M. C. 2007. Early-Middle Triassic echinoderm remains from the Istranca Massif, Turkey. Neus Jahrbuch für Geologie und Paläontologie Abhandlungen 246 (2), 235–45.CrossRefGoogle Scholar
Hoisch, T. D. 1991. Equilibria within the mineral assemblage quartz +muscovite + biotite + garnet + plagioclase, and implications for the mixing properties of octahedrally-coordinated cations in muscovite and biotite. Contributions to Mineralogy and Petrology 108, 4354.CrossRefGoogle Scholar
Hoisch, T. D. 1992. Thermodynamic properties of muscovite and biotite: inferences from natural compositions. Trends in Mineralogy 1, 107–15.Google Scholar
Holm, D. K., & Dokka, R. K. 1993. Interpretation and tectonic implications of cooling histories – an example from the Black Mountains, Death-Valley extended terrane, California. Earth and Planetary Science Letters 116 (14), 6380.CrossRefGoogle Scholar
Ivanov, Z. 2000. Tectonic position, structure and tectonic evolution of Rhodope massif. In Guide to excursion ABCD GEODE 2000 Workshop. Borovets, Bulgaria, pp. 16.Google Scholar
Jeřábek, P., Faryad, W. S., Schulmann, K., Lexa, O. & Tajčmanová, L. 2008. Alpine burial and heterogeneous exhumation of Variscan crust in the west Carpathians: insight from thermodynamic and argon diffusion modeling. Journal of Geological Society, London 165, 479–98.CrossRefGoogle Scholar
Konrad-Schmolke, M., O'brien, P. J., De Capitani, C. & Carswell, D. A. 2008. Garnet growth at high- and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition. Lithos 103, 309–32.CrossRefGoogle Scholar
Koons, P. O., Norris, R. J., Craw, D. & Cooper, A. F. 2003. Influence of exhumation on the structural evolution of transpressional plate boundaries: an example from the Southern Alps, New Zealand. Geology 31, 36.2.0.CO;2>CrossRefGoogle Scholar
Krenn, K., Bauer, C., Proyer, A. & Hoınkes, G. 2007. Geodynamic evolution of an UHP Suture Zone in the Greek Rhodope. American Geophysical Union, Fall Meeting, abstract V13A-1137.Google Scholar
Krogh, E. J., Oh, C. W. & Liou, J. G. 1994. Polyphase and anticlockwise P-T evolution for Franciscan eclogites and blueschists from Jenner, California, USA. Journal of Metamorphic Geology. 12, 121–34.CrossRefGoogle Scholar
Kühn, A., Glodny, J., Iden, K. & Austrheim, H. 2000. Retention of Precambrian Rb/Sr phlogopite ages through Caledonian eclogite facies metamorphism, Bergen Arc Complex, W-Norway. Lithos 51, 305–30.CrossRefGoogle Scholar
Laird, J. 1982. Amphiboles in metamorphosed basaltic rocks. In Amphiboles (eds Veblen, D. R. & Ribbe, P. H.). MSA Reviews in Mineralogy 9B, 113–58.Google Scholar
Liati, A. 2005, Identification of repeated Alpine (ultra) high-pressure metamorphic events by U–Pb SHRIMP geochronology and REE geochemistry of zircon: the Rhodope zone of Northern Greece. Contributions to Mineralogy and Petrology 150, 608–30.CrossRefGoogle Scholar
Liati, A. & Fanning, C. M. 2005. Eclogites and their country rock orthogneisses in East Rhodope representing Upper Permian gabbros and Upper Carboniferous granitoids: geochronological constraints. Abstract Mitteilungen der Österreichischen Mineralogischen Gesellschaft 150, 88.Google Scholar
Lilov, P. & Maliakov, Y. 2001. Données de géochronologie isotopique sur les métadiabases du Strandja. Comtes rendus de L'Académie bulgare des Sciences 54, 6770.Google Scholar
Lilov, P., Maliakov, Y. & Balogh, K. 2004. K-Ar dating of metamorphic rocks from Strandja massif, SE Bulgaria. Bulgarian Academy of Sciences, Geochemistry, Mineralogy and Petrology 41, 107–20.Google Scholar
Ludwig, K. R. 2003. ISOPLOT 3.0. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication. No. 4.Google Scholar
Maruyama, S., Liou, J. G. & Suzuki, K. 1982. The peristerite gap in low-grade metamorphic rocks. Contributions to Mineralogy and Petrology 81, 268–76.CrossRefGoogle Scholar
Maruyama, S., Suzuki, K. & Liou, J. G. 1983. Greenschist-amphibolite transition equilibria at low pressures. Journal of Petrology 24, 583604.CrossRefGoogle Scholar
Minkovska, V., Peybernès, B. & Nikolov, T. 2002. Palaeogeography and geodynamic evolution of the Balkanides and Moesian ‘microplate’ (Bulgaria) during the earliest Cretaceous. Cretaceous Research 23, 3748.CrossRefGoogle Scholar
Miyashiro, A. 1993. Metamorphic Petrology. London: UCL Press, 404 pp.Google Scholar
Montel, J. M., Kornprobst, J. & Vielzeuf, D. 2000. Preservation of old U–Th–Pb ages in shielded monazite: example from Beni Bousera Hercynian kinzigites (Morocco). Journal of Metamorphic Geology 18, 335–42.CrossRefGoogle Scholar
Morillon, A. C., Féraud, G., Sosson, M., Ruffet, G., Crevola, G. & Lerouge, G. 2000. Diachronous cooling on both sides of a major strike slip fault in the Variscan Maures Massif (south-east France), as deduced from a detailed 40Ar/39Ar study. Tectonophysics 321, 103–26.CrossRefGoogle Scholar
Mposkos, E. & Krohe, A. 2006. Pressure–temperature–deformation paths of closely associated ultra-high-pressure (diamond-bearing) crustal and mantle rocks of the Kimi complex: implications for the tectonic history of the Rhodope Mountains, northern Greece. Canadian Journal of Earth Sciences 43, 1755–76.CrossRefGoogle Scholar
Müller, W., Aerden, D. & Halliday, A. N. 2000. Isotopic dating of strain fringe increments: duration and rates of deformation in shear zones. Science 288, 2195–98.CrossRefGoogle ScholarPubMed
Natal'in, B. A., Satir, M., Sunal, G. & Toraman, E. 2005. Structural and metamorphic evolution of the Strandja massif. Project No: 101Y010: Ankara, Turkey, Report, Scientific and Technical Research Council of Turkey.Google Scholar
Natal'in, B. A., Sunal, G. & Toraman, E. 2005. The Strandja arc: anatomy of collision after long-lived arc parallel tectonic transport. In Structural and Tectonic Correlation across the Central Asia Orogenic Collage: North-Eastern Segment, (ed. Sklyarov, E. V.). Guidebook and abstract volume of the Siberian Workshop, pp. 240–45. IGCP-480, IEC SB RAS, Irkutsk.Google Scholar
Okay, A. I. & Satir, M. 2000. Upper Cretaceous eclogite facies metamorphic rocks from the Biga Peninsula, northwest Turkey. Turkish Journal of Earth Sciences 9, 4756.Google Scholar
Okay, A. I., Satir, M., Tüysüz, O., Akyüz, S. & Chen, F. 2001. The tectonics of the Strandja Massif: late-Variscan and mid-Mesozoic deformation and metamorphism in the Northern Aegean. International Journal of Earth Sciences 90, 217–33.CrossRefGoogle Scholar
Passchier, C. W. & Trouw, R. A. J. 1996. Microtectonics. Berlin: Springer-Verlag, 289 pp.Google Scholar
Perinçek, D. 1991. Possible strand of the North Anatolian Fault in the Thrace basin, Turkey – an interpretation. American Association of Petroleum Geologists, Bulletin 57, 241257.Google Scholar
Pouchou, J. L. & Pichoir, F. 1984. A new model for quantitative analyses. I. Application to the analysis of homogeneous samples. La Recherche Arospatiale 3, 1338.Google Scholar
Pouchou, J. L. & Pichoir, F. 1985. ‘PAP’ (f-r-Z) correction procedure for improved quantitative microanalysis. In Microbeam Analysis (ed. Armstrong, J. T.), pp. 104106. San Francisco Press.Google Scholar
Purdy, J. W. & Jäger, E. 1976. K-Ar ages on rock forming minerals from the Central Alps. Memoir of the Institute of Geology and Mineralogy, University of Padova 30, 130.Google Scholar
Reddy, S. M., Wheeler, J., Butler, R. W. H., Cliff, R. A., Freeman, S., Inger, S., Pickles, C. & Kelley, S. P., 2003. Kinematic reworking and exhumation within the convergent Alpine Orogen. Tectonophysics 365, 77102.CrossRefGoogle Scholar
Ricou, L. E. 1994. Tethys reconstructed: plates, continental fragments and their boundaries since 260 Ma from Central America to South-eastern Asia. Geodinamica Acta 7, 169218.CrossRefGoogle Scholar
Schumacher, J. C. 1997. The estimation of ferric iron in electron microprobe analyses of amphiboles. European Journal of Mineralogy 9, 643–51.Google Scholar
Şengör, A. M. C., Yılmaz, Y. & Sungurlu, O. 1984. Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Paleo-Tethys. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robinson, A. H. F.), pp. 77112. Geological Society of London, Special Publication no. 17.Google Scholar
Sıebel, W., Reıtter, E., Wenzel, T. & Blaha, U. 2005. Sr isotope systematics of K-feldspars in plutonic rocks revealed by the Rb–Sr microdrilling technique. Chemical Geology 222, 183–99.CrossRefGoogle Scholar
Spear, F. S. 1980. NaSi = CaAl exchange equilibrium between plagioclase and amphibole. An empirical model. Contributions to Mineralogy and Petrology 72, 3341.CrossRefGoogle Scholar
Spear, F. S. 1981. Amphibole-plagioclase equilibria: an empirical model for the relation albite + tremolite = edenite + 4 quartz. Contributions to Mineralogy and Petrology 77, 355–64.CrossRefGoogle Scholar
Spear, F. S. 2004. Fast cooling and exhumation of the Valhalla Metamorphic Core Complex, southeastern British Columbia. International Geology Review 46, 193209.CrossRefGoogle Scholar
Spear, F. S. & Kohn, M. J. 1999. Program Thermobarometry (GTB, version 2.1). GTB program manual, 42 pp.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Sunal, G., Natal'in, B. A., Satir, M. & Toraman, E. 2006. Paleozoic magmatic events in the Strandja Massif, NW Turkey. Geodinamica Acta 19, 283300.CrossRefGoogle Scholar
Sunal, G., Satir, M., Natal'in, B. A. & Toraman, E. 2008. Paleotectonic position of the Strandja Massif and surrounding continental blocks based on zircon Pb-Pb age studies. International Geology Review 50, 519–45.CrossRefGoogle Scholar
Topuz, G., Altherr, R., Satir, M. & Schwarz, W. H. 2004. Low-grade metamorphic rocks from the Pulur complex, NE Turkey: implications for the pre-Liassic evolution of the Eastern Pontides. International Journal of Earth Sciences 93, 7291.CrossRefGoogle Scholar
Topuz, G., Okay, A. I., Altherr, R., Satir, M. & Schwarz, W. H. 2008. Late Cretaceous blueschist-facies metamorphism in the southeastern Thrace (NW Turkey) and its regional implications. Journal of Metamorphic Geology 26, 895913.CrossRefGoogle Scholar
Tricart, P., Van Der Beek, P., Schwartz, S. & Labrin, E. 2007. Diachronous late-stage exhumation across the western Alpine arc: constraints from apatite fission-track thermochronology between the Pelvoux and Dora-Maira Massifs. Journal of the Geological Society 164, 163–74.CrossRefGoogle Scholar
Türkecan, A. & Yurtsever, A. 2002. Geological map of Turkey; Istanbul. Ankara, Turkey: Publication of the General Directorate of Mineral Research and Exploration.Google Scholar
Villa, I. M. 1998. Isotopic closure. Terra Nova, 10, 42–7.CrossRefGoogle Scholar
Yaltirak, C. 2002. Tectonic evolution of the Marmara Sea and its surroundings. Marine Geology 190 (1–2), 493529.CrossRefGoogle Scholar
Yanev, S. 2000. Palaeozoic terranes of the Balkan Peninsula in the framework of Pangea assembly. Palaeogeography, Palaeoclimatology, Palaeoecology 161, 151–77.CrossRefGoogle Scholar
Zeck, H. P. & Hansen, B. T. 1988. Rb-Sr mineral ages for the Grenvillian metamorphic development of spilites from the DaMand Supracrustal Group, SW Sweden. Geologische Rundschau 77/3, 638–92.Google Scholar
Supplementary material: File

Sunal Supplementary Material

Sunal Supplementary Appendix

Download Sunal Supplementary Material(File)
File 260.6 KB
Supplementary material: File

Sunal Supplementary Material

Sunal Supplementary Table

Download Sunal Supplementary Material(File)
File 31.2 KB