Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T01:16:19.711Z Has data issue: false hasContentIssue false

Metamorphic evolution and age constraints of the garnet-bearing mica schist from the Xindaduo area of the Sumdo (U)HP metamorphic belt, Tibet

Published online by Cambridge University Press:  15 May 2018

CONG ZHANG*
Affiliation:
Key Laboratory of Deep-Earth Dynamics of MLR, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
THOMAS BADER
Affiliation:
School of Earth and Space Sciences, Peking University, Beijing 100087, China
LINGMIN ZHANG
Affiliation:
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
TINGTING SHEN
Affiliation:
Key Laboratory of Deep-Earth Dynamics of MLR, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
PENG LI
Affiliation:
Key Laboratory of Deep-Earth Dynamics of MLR, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
XUPING LI
Affiliation:
College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
*
Author for correspondence: [email protected]

Abstract

As one of the major components of the Himalayan–Tibetan Orogeny, the Lhasa terrane plays a key role in understanding the origin and evolution of this giant orogenic belt and the opening and closure of the Tethys oceans. The eclogite-bearing Sumdo Complex in the central Lhasa terrane was recognized as the main suture of the Palaeo-Tethys Ocean between the north and south Lhasa sub-terranes. Despite the eclogite having been studied for a long time, no attempts have been applied to studying the country rocks, causing confusion in understanding the relationship between the eclogite and the adjacent schist. Petrological investigations and phase equilibrium calculations on the garnet-bearing mica schist of the Sumdo Complex have been performed to constrain its metamorphic evolution. The P–T conditions for three metamorphic stages are constrained as P1 (480–500°C, 2.6–2.7 GPa), P2 (580–600°C, 1.3–1.4 GPa) and R (530°C, 0.9 GPa), which represent the prograde, temperature peak and retrograde stages. Two possible P–T paths were constructed, which experienced isothermal decompression (PT1) or heating with a decompression process (PT2), corresponding to the growth and extinction of garnet porphyroblasts in the matrix. The LA-MC-ICP-MS U–Pb dating method yielded a metamorphic age of 229.7±3.5 Ma, which was interpreted as the age of amphibolite-facies metamorphism at c. 600°C, 1.2–1.4 GPa during the closure of the Palaeo-Tethys Ocean, resulting in the aggregation of the north and south Lhasa sub-terranes. The close relationship between the eclogite and garnet-bearing mica schist, and their similar P–T–t paths indicate an in situ tectonic evolution rather than tectonic juxtaposition during exhumation.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Cao, D., Cheng, H., Zhang, L. M. & Wang, K. 2017. Post-peak metamorphic evolution of the Sumdo eclogite from the Lhasa terrane of southeast Tibet. Journal of Asian Earth Sciences 143, 156–70.CrossRefGoogle Scholar
Carswell, D. A. 1990. Eclogite Facies Rocks. New York: Blackie.CrossRefGoogle Scholar
Carswell, D. A. & Cuthbert, S. J. 2003. Ultrahigh pressure metamorphism in the Western Gneiss Region of Norway. In EMU Notes in Mineralogy, Vol. 5 (eds Carswell, D. A. & Compagnoni, R.), pp. 5173. Budapest: Eötvös University Press.Google Scholar
Chen, S. Y., Yang, J. S., Luo, L. Q., Li, Z. L., Xu, X. Z., Li, T. F., Ren, Y. F. & Li, H. Q. 2007. MORB-type eclogites in the Lhasa block, Tibet, China: petrochemical evidence. Geological Bulletin of China 26, 1327–39 (in Chinese with English abstract).Google Scholar
Cheng, H., Liu, Y., Vervoort, J. D. & Lu, H. 2015. Combined U–Pb, Lu–Hf, Sm–Nd and Ar–Ar multichronometric dating on the Bailang eclogite constrains the closure timing of the Paleo-Tethys Ocean in the Lhasa terrane, Tibet. Gondwana Research 28, 1482–99.CrossRefGoogle Scholar
Cheng, H., Zhang, C., Vervoort, J. D., Lu, H., Wang, C. & Cao, D. 2012. Zircon U–Pb and garnet Lu–Hf geochronology of eclogites from the Lhasa Block, Tibet. Lithos 155, 341–59.CrossRefGoogle Scholar
Chopin, C. 1984. Coesite and pure pyrope in high-grade blueschists of the Western Alps – a 1st record and some consequences. Contributions to Mineralogy and Petrology 86, 107–18.CrossRefGoogle Scholar
Chopin, C. 2003. Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth and Planetary Science Letters 212, 114.CrossRefGoogle Scholar
Coggon, R. & Holland, T. J. B. 2002. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. Journal of Metamorphic Geology 20, 683–96.CrossRefGoogle Scholar
Coleman, R. G. & Wang, X. 1995. Ultrahigh-Pressure Metamorphism. New York: Cambridge University Press.CrossRefGoogle Scholar
Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry 53, 469500.CrossRefGoogle Scholar
De Capitani, C. & Petrakakis, K. 2010. The computation of equilibrium assemblage diagrams with Theriak/Domino software. American Mineralogist 95, 1006–16.CrossRefGoogle Scholar
Dong, X., Zhang, Z., Liu, F., Wang, W., Yu, F. & Shen, K. 2011. Zircon U–Pb geochronology of the Nyainqentanglha Group from the Lhasa terrane: new constraints on the Triassic orogeny of the south Tibet. Journal of Asian Earth Sciences 42, 732–9.Google Scholar
Du, J., Zhang, L., , Z. & Chu, X. 2011. Lawsonite-bearing chloritoid–glaucophane schist from SW Tianshan, China: phase equilibria and P–T path. Journal of Asian Earth Sciences 42, 684–93.CrossRefGoogle Scholar
Ernst, W. G. 2001. Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices – implications for arcs and continental growth. Physics of the Earth and Planetary Interiors 127, 253–75.CrossRefGoogle Scholar
Ernst, W. G., Hacker, B. R. & Liou, J. G. 2007. Petrotectonics of ultrahigh-pressure crustal and upper-mantle rocks – implications for Phanerozoic collisional orogens. In Whence the Mountains? Inquiries into the Evolution of Orogenic Systems: A Volume in Honor of Raymond A. Price (eds Sears, J. W., Harms, T. A. & Evenchick, C. A), pp. 2749. Geological Society of America Special Paper no. 433.CrossRefGoogle Scholar
Ernst, W. G. & Liou, J. G. 1995. Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan Metamorphic Belts. Geology 23, 353–6.2.3.CO;2>CrossRefGoogle Scholar
Ernst, W. G. & Liou, J. G. 2008. High- and ultrahigh-pressure metamorphism – past results, future prospects. American Mineralogist 93, 1771–86.CrossRefGoogle Scholar
Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., McQuarrie, N. & Yin, A. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 30, TC5016. doi: 10.1029/2011TC002868.CrossRefGoogle Scholar
Green, E., Holland, T. & Powell, R. 2007. An order–disorder model for omphacitic pyroxenes in the system jadeite–diopside–hedenbergite–acmite, with applications to eclogitic rocks. American Mineralogist 92, 1181–9.CrossRefGoogle Scholar
Guiraud, M., Powell, R. & Rebay, G. 2001. H2O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages. Journal of Metamorphic Geology 19, 445–54.CrossRefGoogle Scholar
Hébert, R., Guilmette, C., Dostal, J., Bezard, R., Lesage, G., Bédard, É. & Wang, C. 2014. Miocene post-collisional shoshonites and their crustal xenoliths, Yarlung Zangbo Suture Zone southern Tibet: geodynamic implications. Gondwana Research 25, 1263–71.CrossRefGoogle Scholar
Holland, T., Baker, J. & Powell, R. 1998. Mixing properties and activity-composition relationships of chlorites in the system MgO–FeO–Al2O3–SiO2–H2O. European Journal of Mineralogy 10, 395406.CrossRefGoogle Scholar
Holland, T. J. B. & Powell, R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16, 309–43.CrossRefGoogle Scholar
Huang, J., Tian, Z. L., Zhang, C., Yang, J. S. & Chen, M. 2015. Metamorphic evolution of Sumdo eclogite in Lhasa Block of the Tibetan Plateau: phase equilibrium in NCKMnFMASHTO system. Geology in China 42, 1559–71 (in Chinese with English abstract).Google Scholar
Klootwijk, C. 2013. Middle–Late Paleozoic Australia–Asia convergence and tectonic extrusion of Australia. Gondwana Research 24, 554.CrossRefGoogle Scholar
Krogh Ravna, E. & Terry, M. P. 2004. Geothermobarometry of UHP and HP eclogites and schists – an evaluation of equilibria among garnet–clinopyroxene–kyanite–phengite–coesite/quartz. Journal of Metamorphic Geology 22, 579–92.CrossRefGoogle Scholar
Le Goff, E. & Bellevre, M. 1990. Geothermobarometry in albite-garnet orthogneisses: a case study from the Gran Paradiso nappe (Western Alps). Lithos 25, 261–80.CrossRefGoogle Scholar
Li, Z. Y., Ding, L., Lippert, P. C., Song, P. P., Yue, Y. H. & van Hinsbergen, D. J. J. 2016. Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia. Geology 44, 727–30.CrossRefGoogle Scholar
Li, H. Q., Xu, Z. Q., Yang, J. S., Cai, Z. H., Chen, S. Y. & Tang, Z. M. 2009. Records of Indosinian orogenesis in Lhasa terrane, Tibet. Journal of Earth Science 20, 348–63.CrossRefGoogle Scholar
Li, P., Zhang, C., Liu, X. Y., Shen, T. T., Qiu, T. & Yang, J. S. 2017. The metamorphic processes of the Xindaduo eclogite in Tibet and its constrain on the evolutionary of the Paleo-Tethys subduction zone. Acta Petrologica Sinica 33, 3753–65 (in Chinese with English abstract).Google Scholar
Li, H. K., Zhu, S. X., Xiang, Z. Q., Su, W. B., Lu, S. N., Zhou, H. Y., Geng, J. Z., Li, S. & Yang, F. J. 2010. Zircon U–Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton. Acta Petrologica Sinica 26, 2131–40 (in Chinese with English abstract).Google Scholar
Liou, J. G., Ernst, W. G., Zhang, R. Y., Tsujimori, T. & Jahn, B. M. 2009. Ultrahigh-pressure minerals and metamorphic terranes – the view from China. Journal of Asian Earth Sciences 35, 199231.CrossRefGoogle Scholar
Liou, J. G., Tsujimori, T., Zhang, R. Y., Katayama, I. & Maruyama, S. 2004. Global UHP metamorphism and continental subduction/collision: the Himalayan model. International Geology Review 46, 127.CrossRefGoogle Scholar
Liu, Y., Liu, H., Theye, T. & Massonne, H.-J. 2009. Evidence for oceanic subduction at the NE Gondwana margin during Permo-Triassic times. Terra Nova 21, 195202.CrossRefGoogle Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot Version 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication no. 4.Google Scholar
Maruyama, S., Liou, J. G. & Terabayashi, M. 1996. Blueschists and eclogites of the world and their exhumation. International Geology Review 38, 485594.CrossRefGoogle Scholar
Menold, C. A., Manning, C. E., Yin, A., Tropper, P., Chen, X. H. & Wang, X. F. 2009. Metamorphic evolution, mineral chemistry and thermobarometry of orthogneiss hosting ultrahigh-pressure eclogites in the North Qaidam metamorphic belt, Western China. Journal of Asian Earth Sciences 35, 273–84.CrossRefGoogle Scholar
Pan, G. T., Mo, X. X., Hou, Z. Q., Zhu, D. C., Wang, L. Q., Li, G. M., Zhao, Z. D., Geng, Q. R. & Liao, Z. L. 2006. Spatial-temporal framework of the Gongdese Orogenic Belt and its evolution. Acta Petrologica Sinica 22, 521–33 (in Chinese with English abstract).Google Scholar
Philippot, P. & van Roermund, H. L. M. 1992. Deformation processes in eclogitic rocks – evidence for the rheological delamination of the oceanic-crust in deeper levels of subduction zones. Journal of Structural Geology 14, 1059–77.CrossRefGoogle Scholar
Powell, R. & Holland, T. 1999. Relating formulations of the thermodynamics of mineral solid solutions; activity modeling of pyroxenes, amphiboles, and micas. American Mineralogist 84, 114.CrossRefGoogle Scholar
Powell, R., Holland, T. & Worley, B. 1998. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. Journal of Metamorphic Geology 16, 577–88.CrossRefGoogle Scholar
Proyer, A. 2003. The preservation of high-pressure rocks during exhumation: metagranites and metapelites. Lithos 70, 183–94.CrossRefGoogle Scholar
Shi, R., Yang, J., Xu, Z. & Qi, X. 2008. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong–Nujiang suture zone. Journal of Asian Earth Sciences 32, 438–57.CrossRefGoogle Scholar
Smith, D. C. 1988. Eclogites and Eclogite Facies Rocks. Amsterdam: Elsevier.Google Scholar
Song, S., Niu, Y., Su, L., Zhang, C. & Zhang, L. 2014. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: the example of the North Qaidam UHPM belt, NW China. Earth-Science Reviews 129, 5984.CrossRefGoogle Scholar
Song, S. G., Zhang, L. F., Niu, Y. L., Su, L., Song, B. & Liu, D. Y. 2006. Evolution from oceanic subduction to continental collision: a case study from the Northern Tibetan Plateau based on geochemical and geochronological data. Journal of Petrology 47, 435–55.CrossRefGoogle Scholar
Wei, C. J. 2012. Advance of metamorphic petrology during the first decade of the 21st century. Bulletin of Mineralogy, Petrology and Geochemistry 31, 416–27 (in Chinese with English abstract).Google Scholar
Wei, C. J. & Powell, R. 2004. Calculated phase relations in high-pressure metapelites in the system NKFMASH (Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O) with application to natural rocks. Journal of Petrology 45, 183202.CrossRefGoogle Scholar
Wei, C. J., Qian, J. H. & Tian, Z. L. 2013. Metamorphic evolution of medium-temperature ultra-high pressure (MT-UHP) eclogites from the South Dabie orogen, Central China: an insight from phase equilibria modelling. Journal of Metamorphic Geology 31, 755–74.CrossRefGoogle Scholar
Wei, C. J., Su, X. L., Lou, Y. X. & Li, Y. J. 2009. A new interpretation of the conventional thermobarometry in eclogite: evidence from the calculated PT pseudosections. Acta Petrologica Sinica 25, 2078–88 (in Chinese with English abstract).Google Scholar
Weller, O. M., St-Onge, M. R., Rayner, N., Waters, D. J., Searle, M. P. & Palin, R. M. 2016. U–Pb zircon geochronology and phase equilibria modelling of a mafic eclogite from the Sumdo complex of south-east Tibet: insights into prograde zircon growth and the assembly of the Tibetan plateau. Lithos 262, 729–41.CrossRefGoogle Scholar
White, R. W., Pomroy, N. E. & Powell, R. 2005. An in situ metatexite–diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia. Journal of Metamorphic Geology 23, 579602.CrossRefGoogle Scholar
Wu, Y. B. & Zheng, Y. F. 2004. Genetic mineralogy of zircon and its constraints on the interpretation of U–Pb age. Chinese Science Bulletin 49, 1589–604 (in Chinese with English abstract).CrossRefGoogle Scholar
Xu, Z., Dilek, Y., Cao, H., Yang, J., Robinson, P., Ma, C., Li, H., Jolivet, M., Roger, F. & Chen, X. 2015. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides. Journal of Asian Earth Sciences 105, 320–37.CrossRefGoogle Scholar
Xu, Q., Zhao, J., Yuan, X., Liu, H. & Pei, S. 2015. Mapping crustal structure beneath southern Tibet: seismic evidence for continental crustal underthrusting. Gondwana Research 27, 1487–93.CrossRefGoogle Scholar
Yang, D. M., He, Z. H., Huang, Y. C., Zhao, L. & Dai, L. N. 2005. Metamorphism characteristics of Songduo Group in Menba Township Mozhugongka Country, Tibet and the discussion on its age. Journal of Jilin University (Earth Science Edition) 35, 430–5 (in Chinese with English abstract).Google Scholar
Yang, J. S., Xu, Z. Q., Geng, Q. R., Li, Z. L., Xu, X. Z., Li, T. F., Ren, Y. F., Li, H. Q., Cai, Z. H., Liang, F. H. & Chen, S. Y. 2006. A possible new HP/UHP(?) metamorphic belt in China: discovery of eclogite in the Lhasa Terrane, Tibet. Acta Geologica Sinica 80, 1787–92 (in Chinese with English abstract).Google Scholar
Yang, J. S., Xu, Z. Q., Li, Z. L., Xu, X. Z., Li, T. F., Ren, Y. F., Li, H. Q., Chen, S. Y. & Robinson, P. T. 2009. Discovery of an eclogite belt in the Lhasa block, Tibet: a new border for Paleo-Tethys? Journal of Asian Earth Sciences 34, 7689.CrossRefGoogle Scholar
Yang, X. L., Zhang, L. F., Zhao, Z. D. & Zhu, D. C. 2014. Metamorphic evolution of glaucophane eclogite from Sumdo, Lhasa block of Tibetan Plateau: phase equilibria and metamorphic P–T path. Acta Petrologica Sinica 30, 1505–19 (in Chinese with English abstract).Google Scholar
Yin, A. & Harrison, T. M. 2000. Geological evolution of the Himalayan-Tibet orogen. Annual Review of Earth and Planetary Sciences 28, 211–80.CrossRefGoogle Scholar
Zeng, L. S., Liu, J., Gao, L. E., Chen, F. Y. & Xie, K. J. 2009. Early Mesozoic high-pressure metamorphism within the Lhasa Block, Tibet and its implications for regional tectonics. Earth Science Frontiers 16, 140–51 (in Chinese with English abstract).CrossRefGoogle Scholar
Zhang, C., Bader, T., van Roermund, H. L. M., Yang, J. S., Shen, T. T., Qiu, T. & Li, P. 2018. The metamorphic evolution and tectonic significance of the Sumdo HP–UHP metamorphic terrane, central-south Lhasa Block, Tibet. In HP–UHP Metamorphism and Tectonic Evolution of Orogenic Belts (eds Zhang, L., Zhang, Z., Schertl, H.-P. & Wei, C.), Geological Society of London, Special Publication no. 474, published online 22 March 2018. doi: 10.1144/SP474.4.Google Scholar
Zhang, C., Bader, T., Zhang, L. & van Roermund, H. 2017. The multi-stage tectonic evolution of the Xitieshan terrane, North Qaidam orogen, western China: from Grenville-age orogeny to early-Paleozoic ultrahigh-pressure metamorphism. Gondwana Research 41, 290300.CrossRefGoogle Scholar
Zhang, Z. M., Dong, X., Santosh, M. & Zhao, G. C. 2014. Metamorphism and tectonic evolution of the Lhasa terrane, Central Tibet. Gondwana Research 25, 170–89.CrossRefGoogle Scholar
Zhang, L. F., Ellis, D. J., Arculus, R. J., Jiang, W. & Wei, C. 2003. ‘Forbidden zone’ subduction of sediments to 150 km depth – the reaction of dolomite to magnesite plus aragonite in the UHPM metapelites from western Tianshan, China. Journal of Metamorphic Geology 21, 523–9.CrossRefGoogle Scholar
Zhang, R. Y., Jahn, B. M., Liou, J. G., Yang, J. S., Chiu, H. Y., Chung, S. L., Li, T. F. & Lo, C. H. 2010. Origin and tectonic implication of an UHP metamorphic mafic–ultramafic complex from the Sulu UHP terrane, eastern China: evidence from petrological and geochemical studies of CCSD-Main Hole core samples. Chemical Geology 276, 6987.CrossRefGoogle Scholar
Zhang, J. X., Mattinson, C. G., Meng, F. C., Wan, Y. S. & Tung, K. 2008. Polyphase tectonothermal history recorded in granulitized gneisses from the north Qaidam HP/UHP metamorphic terrane, western China: evidence from zircon U–Pb geochronology. Geological Society of America Bulletin 120, 732–49.CrossRefGoogle Scholar
Zhang, Z. M. & Santosh, M. 2012. Tectonic evolution of Tibet and surrounding regions. Gondwana Research 21, 13.CrossRefGoogle Scholar
Zhang, J., Santosh, M., Wang, X., Guo, L., Yang, X. & Zhang, B. 2012. Tectonics of the northern Himalaya since the India–Asia collision. Gondwana Research 21, 939–60.CrossRefGoogle Scholar
Zhang, C., van Roermund, H., Zhang, L. F. & Spiers, C. 2012. A polyphase metamorphic evolution for the Xitieshan paragneiss of the north Qaidam UHP metamorphic belt, western China: in-situ EMP monazite- and U–Pb zircon SHRIMP dating. Lithos 136–139, 2745.CrossRefGoogle Scholar
Zhang, H. F., Xu, W. C., Guo, J. Q., Zong, K. Q., Cai, H. M. & Yuan, H. L. 2007. Indosinian orogenesis of the Gangdise terrane: evidences from zircon U–Pb dating and petrogenesis of granitoids. Earth Science 32, 155–66 (in Chinese with English abstract).Google Scholar
Zhang, D. D., Zhang, L. F. & Zhao, Z. D. 2011. A study of metamorphism of Sumdo eclogite in Tibet, China. Earth Science Frontiers 18, 116–26 (in Chinese with English abstract).Google Scholar
Zhao, J., Zhao, D., Zhang, H., Liu, H., Huang, Y., Cheng, H. & Wang, W. 2014. P-wave tomography and dynamics of the crust and upper mantle beneath western Tibet. Gondwana Research 25, 1690–9.CrossRefGoogle Scholar
Zheng, Y. F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology 328, 548.CrossRefGoogle Scholar
Zheng, Y. F., Fu, B., Gong, B. & Li, L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth-Science Reviews 62, 105–61.CrossRefGoogle Scholar
Zhu, D. C., Zhao, Z. D., Niu, Y. L., Dilek, Y., Hou, Z. Q. & Mo, X. X. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research 23, 1429–54.CrossRefGoogle Scholar
Zhu, D. C., Zhao, Z. D., Niu, Y. L., Dilek, Y. & Mo, X. X. 2011a. Lhasa terrane in southern Tibet came from Australia. Geology 39, 727–30.CrossRefGoogle Scholar
Zhu, D.-C., Zhao, Z.-D., Niu, Y., Mo, X.-X., Chung, S.-L., Hou, Z.-Q., Wang, L.-Q. & Wu, F.-Y. 2011b. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters 301, 241–55.CrossRefGoogle Scholar