Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T17:56:34.184Z Has data issue: false hasContentIssue false

The Lower Jurassic Hanson Formation of the Transantarctic Mountains: implications for the Antarctic sector of the Gondwana plate margin

Published online by Cambridge University Press:  27 July 2016

D.H. ELLIOT*
Affiliation:
School of Earth Sciences and Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH 43214, USA
D. LARSEN
Affiliation:
Department of Earth Sciences, University of Memphis, Memphis, TN 38152, USA
C.M. FANNING
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
T.H. FLEMING
Affiliation:
Department of Earth Science, Southern Connecticut State University, New Haven, CT 06515, USA
J. D. VERVOORT
Affiliation:
School of the Environment, Washington State University, Pullman, WA 99164, USA
*
Author for correspondence: [email protected]

Abstract

The Hanson Formation, Antarctica, consists of interbedded sandstones and tuffaceous rocks of Early Jurassic age. The sandstones, pebbly to medium-grained, range between quartzo-feldspathic and volcaniclastic, with some of the former being coarse-grained arkoses that imply proximal sources. Geochronology of detrital zircons provides evidence for source rock ages, whereas sandstone petrology demonstrates a mixed provenance. Tuffaceous strata are reworked fine to very fine-grained tuffs resulting from distal Plinian eruptions. Dated tuffs provide time constraints on the duration of volcanism. The sandstones and tuffs accumulated in a rift environment. Geochemically the tuffs are rhyolitic in composition, and the Sr and Nd isotope data together with the patterns on multi-element diagrams suggest they were derived from a volcanic arc, which is interpreted to have been located along the West Antarctic Gondwana margin. The silicic volcanism extends the distribution and timing of magmatism in the Early Jurassic along that margin. The Early Jurassic extensional regime was delimited by the plate margin region and the East Antarctic craton. The rift valley system along the East Antarctic craton margin, in which the Hanson strata accumulated, was the focus for subsequent emplacement of the intrusive and extrusive rocks of the Lower Jurassic Ferrar Large Igneous Province. The Early Jurassic extensional rifts may have been reactivated during Cretaceous–Cenozoic development of the West Antarctic Rift System.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C. J. 2008. Geochronology of Paleozoic terranes at the Pacific margin of Zealandia. Gondwana Research 13, 250–8.CrossRefGoogle Scholar
Barrett, P. J. 1969. Stratigraphy and Petrology of the Mainly Fluviatile Permian and Triassic Beacon Rocks, Beardmore Glacier Area, Antarctica. Columbus, Ohio State University, Institute of Polar Studies Report no. 34, 132 pp.Google Scholar
Barrett, P. J. 1991. The Devonian to Triassic Beacon Supergroup of the Transantarctic Mountains and correlatives in other parts of Antarctica. In The Geology of Antarctica (ed. Tingey, R. J.), pp. 120–52. Clarendon Press, Oxford, Oxford Monographs on Geology and Geophysics no. 17.Google Scholar
Barrett, P. J. & Elliot, D. H. 1973. Reconnaissance Geologic map of the Buckley Island Quadrangle, Transantarctic Mountains, Antarctica. Antarctica 1:250 000 Map A-3. Washington, DC: United States Geological Survey.Google Scholar
Barrett, P. J., Elliot, D. H. & Lindsay, J. F. 1986. The Beacon Supergroup (Devonian–Triassic) and Ferrar Group (Jurassic) in the Beardmore Glacier area, Antarctica. In Geology of the Central Transantarctic Mountains (eds Turner, M. D. & Splettstoesser, J. F.), pp. 339428. American Geophysical Union, Washington, DC, Antarctic Research Series 36.Google Scholar
Barrett, P. J., Lindsay, J. F. & Gunner, J. 1970. Reconnaissance Geologic Map of the Mount Rabot Quadrangle, Transantarctic Mountains, Antarctica. Antarctica 1:250 000 Map No. 1. Washington, DC: United States Geological Survey.Google Scholar
Behrendt, J. C. 1999. Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations — a review. Global and Planetary Change 23, 2544.Google Scholar
Benton, R. C., Terry, D. O. Jr., Evanoff, E. & McDonald, H. G. 2015. The White River Badlands: Geology and Paleontology. Bloomington: Indiana University, 240 pp.Google Scholar
Best, M. G., Christiansen, E. H., Deino, A. L., Gromme, S., Hart, G. L. & Tingey, D. G. 2013. The 36–18 Ma Indian Peak-Caliente ignimbrite field and calderas, southeastern Great Basin, USA: Multicyclic super-eruptions. Geosphere 9, 866950.Google Scholar
Bialas, R. W., Buck, W. R., Studinger, M. & Fitzgerald, P. G. 2007. Plateau collapse model for the Transantarctic Mountains–West Antarctic rift system: insights from numerical experiments. Geology 35, 687–90.Google Scholar
Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.Google Scholar
Bomfleur, B., Pott, C. & Kerp, H. 2011. Plant assemblages from the Shafer Peak Formation (Lower Jurassic), north Victoria Land, Transantarctic Mountains. Antarctic Science 23, 188208.CrossRefGoogle Scholar
Bomfleur, B., Schöner, R., Schneider, J. W., Viereck, L., Kerp, H. & Mckellar, J. L. 2014. From the Transantarctic Basin to the Ferrar Large Igneous Province: New palynostratigraphic age constraints for Triassic–Jurassic sedimentation and magmatism in East Antarctica. Review of Palaeobotany and Palynology 207, 1837.CrossRefGoogle Scholar
Borg, S. G., DePaolo, D. J. & Smith, B. M. 1990. Isotopic structure and tectonics of the central Tansantarctic Mountains. Journal of Geophysical Research 95, 6647–67.Google Scholar
Bouvier, A., Vervoort, J. D. & Patchett, P. J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273, 4857.Google Scholar
Bradshaw, M. A. 1987. Additional field interpretation of the Jurassic sequence at Carapace Nunatak and Coombs Hills, south Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics 30, 3749.CrossRefGoogle Scholar
Breitkreuz, C., de Silva, S. L., Wilke, H. G., Pfänder, J. A. & Renno, A. D. 2014. Neogene to Quaternary ash deposits in the coastal Cordillera in northern Chile: distal ashes from supereruptions in the Central Andes. Journal of Volcanology and Geothermal Research 269, 6882.CrossRefGoogle Scholar
Bromfield, K., Burrett, C. F., Leslie, R. A. & Mefre, S. 2007. Jurassic volcaniclastic-basaltic andesite-dolerite sequence in Tasmania: new age constraints for fossil plants from Lune River. Australian Journal of Earth Sciences 54, 965–74.Google Scholar
Bryan, S. E., Riley, T. R., Jerram, D. A., Stephens, C. J. & Leat, P. T. 2002. Silicic volcanism: an undervalued component of large igneous provinces and volcanic rifted margins. In Volcanic Rifted Margins (eds Menzies, M. A., Klemperer, S., Ebinger, C. J. & Baker, J.), pp. 97118. Geological Society of America, Boulder, Special Paper no. 362.Google Scholar
Burgess, S. D., Bowring, S. A., Fleming, T. H. & Elliot, D. H. 2015. High precision geochronology links the Ferrar Large Igneous Province with early Jurassic ocean anoxia and biotic crisis. Earth and Planetary Science Letters 415, 90–9, doi:10.1016/j.epsl.2015.01.037.CrossRefGoogle Scholar
Chapin, C. E. 2012. Origin of the Colorado Mineral Belt. Geosphere 8, 2843.CrossRefGoogle Scholar
Chorowicz, J. 2005. The East African rift system. Journal of African Earth Sciences 43, 379410.Google Scholar
Christiansen, E. H., Baxter, N., Ward, T. P., Zobell, E., Chandler, M. R., Dorais, M. J., Kowallis, B. J. & Clark, D. L. 2007. Cenozoic Soldiers Pass volcanic field, central Utah – implications for the transition to extension-related magmatism in the Basin and Range Province. In Central Utah–Diverse Geology of a Dynamic Landscape (eds Willis, G. C., Hylland, M. D., Clark, D. L. & Chidsey, T. C.), pp. 123–40. Utah Geological Association, Salt Lake City, Publication no. 36.Google Scholar
Christiansen, R. L. & Yeats, R. L. 1992. Post-Laramide geology of the U.S. Cordilleran region. In The Cordilleran Orogen: Conterminous US (eds Burchfiel, B. C., Lipman, P. W. & Zoback, M. L.), pp. 241406. Geological Society of America, Boulder, The Geology of North America G-3.Google Scholar
Cleverly, R. W., Betton, P. J. & Bristow, J. W. 1984. Geochemistry and petrogenesis of the Lebombo rhyolites. In Petrogenesis of the Voclanic Rocks of the Karoo Province (ed. Erlank, A. J.), pp. 171–95. Geological Society of South Africa, Special Publication no. 13.Google Scholar
Collinson, J. W. & Elliot, D. H. 1984. Geology of Coalsack Bluff, Antarctica. In Geology of the Central Transantarctic Mountains (eds Turner, M. D. & Splettstoesser, J. F.), pp. 97102. American Geophysical Union, Washington, DC, Antarctic Research Series 36.Google Scholar
Collinson, J. W., Elliot, D. H., Isbell, J. L. & Miller, J. M. G. 1994. Permian–Triassic Transantarctic Basin. In Permian–Triassic Pangaean Basins and Foldbelts along the Panthalassan margin of Gondwanaland (eds Veevers, J. J. & Powell, C. McA.), pp. 173222. Geological Society of America, Boulder, Colorado, Memoir no. 184.Google Scholar
Collinson, J. W., Pennington, D. C. & Kemp, N. R. 1986. Stratigraphy and petrology of Permian and Triassic fluvial deposits in northern Victoria Land. In Geological Investigations in Northern Victoria Land (ed. Stump, E.), pp. 211–42. American Geophysical Union, Washington, DC, Antarctic Research Series 46.Google Scholar
Cox, K. G. 1988. The Karoo Province. In Continental Flood Basalts (ed. Macdougall, J. D.), pp. 239–71. Dordrecht, Netherlands: Kluwer Academic Publishers.Google Scholar
Curtis, M. L. & Storey, B. C. 1996. A review of geological constraints on the pre-break-up position of the Ellsworth Mountains within Gondwana: implications for Weddell Sea evolution. In Weddell Sea Tectonics and Gondwana Break-up (eds Storey, B. C., King, E. C. & Livermore, R. A.), pp. 1130. Geological Society of London, Special Publication no. 108.Google Scholar
Dalziel, I. W. D., Lawver, L. A. & Murphy, J. B. 2000. Plumes, orogenesis, and supercontinental fragmentation. Earth and Planetary Science Letters 178, 111.Google Scholar
de Silva, S. L. & Gosnold, W. D. 2007. Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. Journal of Volcanology and Geothermal Research 167, 320–35.CrossRefGoogle Scholar
de Silva, S. L., Zandt, G., Trumbull, R., Viramonte, J. G., Salas, G. & Jiménez, N. 2006. In Mechanisms of Activity and Unrest at Large Calderas (eds Troise, C., Natale, G. & Kilburn, C. R. J.), pp. 4763. Geological Society of London, Special Publication no. 269.Google Scholar
Dickinson, W. R. 2009. Anatomy and global context of the North American Cordillera. In Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision (eds Kay, S. M., Ramos, V. A. & Dickinson, W. R.), pp. 129. Geological Society of America, Boulder, Memoir no. 204.Google Scholar
Elliot, D. H. 1996. The Hanson Formation: a new stratigraphical unit in Transantarctic Mountains, Antarctica. Antarctic Science 8, 389–94.Google Scholar
Elliot, D. H. 2000. Stratigraphy of Jurassic pyroclastic rocks in the Transantarctic Mountains, Antarctica. Journal of African Earth Sciences 31, 7789.Google Scholar
Elliot, D. H. 2002. Paleovolcanological setting of the Mawson Formation: evidence from the Prince Albert Mountains, Victoria Land. In Antarctica at the Close of a Millenium (eds Gamble, J. A., Skinner, D. N. B. & Henrys, S.), pp. 185192. Royal Society of New Zealand, Bulletin no. 35.Google Scholar
Elliot, D. H. 2013. The geological and tectonic evolution of the Transantarctic Mountains: a review. In Antarctic Palaeoenvironments and Earth-Surface Processes (eds Hambrey, M. J., Barker, P. F., Barrett, P. J., Bowman, V., Davies, B., Smellie, J. L. & Tranter, M.), pp. 735. Geological Society of London, Special Publication no. 381.Google Scholar
Elliot, D. H., Barrett, P. J. & Mayewski, P. A. 1974. Reconnaissance Geologic map of the Plunket Point Quadrangle, Transantarctic Mountains, Antarctica. Antarctica 1:250 000 Map A-4. Washington, DC: United States Geological Survey.Google Scholar
Elliot, D. H., Bigham, J. & Jones, F. S. 1991. Interbeds and weathering profiles in the Jurassic basalt sequence, Beardmore Glacier region, Antarctica. In Gondwana Seven Proceedings (eds Ulbrich, H. & Rocha Campos, A.C.), pp. 289301. São Paulo: Instituto de Geociências.Google Scholar
Elliot, D. H. & Fanning, C. M. 2008. Detrital zircons from upper Permian and lower Triassic Victoria Group sandstones, Shackleton Glacier region, Antarctica: evidence for multiple sources along the Gondwana plate margin. Gondwana Research 13, 259–74.Google Scholar
Elliot, D. H., Fanning, C. M. & Hulett, S. R. W. 2014. Age provinces in the Antarctic craton: evidence from detrital zircons in Permian strata from the Beardmore Glacier region, Antarctica. Gondwana Research 28, 152–64.Google Scholar
Elliot, D. H., Fanning, C. M. & Laudon, T. S. 2014. The Gondwana Plate margin in the Weddell Sea sector: zircon geochronology of Upper Paleozoic (mainly Permian) strata from the Ellsworth Mountains and eastern Ellsworth Land. Gondwana Research 29, 234–47.Google Scholar
Elliot, D. H. & Fleming, T. H. 2004. Occurrence and dispersal of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica. Gondwana Research 7, 223–37.CrossRefGoogle Scholar
Elliot, D. H. & Fleming, T. H. 2008. Physical volcanology and geological relationships of the Ferrar Large Igneous Province, Antarctica. Journal of Volcanology and Geothermal Research 172, 2037.CrossRefGoogle Scholar
Elliot, D. H., Fleming, T. F., Foland, K. A. & Fanning, C. M. 2007. Jurassic silicic volcanism in the Transantarctic Mountains: is it related to plate margin processes or to Ferrar magmatism? In Antarctica: A Keystone in a Changing World (eds Cooper, A. K., Raymond, C. R., et al.), pp. 15. Online proceedings of the 10th ISAES, USGS Open-File Report 2007-1047, Short Research Paper no. 51, doi:10.3133/of2007-1047.srp051.Google Scholar
Elliot, D. H., Fortner, E. H. & Grimes, C. B. 2006. Mawson breccias intrude Beacon strata at Allan Hills, south Victoria Land: regional implications. In Antarctica: Contributions to Global Earth Sciences (eds Futterer, D. K., Damaske, D., Kleinschmidt, G., Miller, H. & Tessensohn, F.), pp. 289–96. Berlin: Springer-Verlag.Google Scholar
Elliot, D. H. & Grimes, C. G. 2011. Triassic and Jurassic strata at Coombs Hills, south Victoria Land: stratigraphy, petrology and cross-cutting breccia pipes. Antarctic Science 23, 268280, doi:10.1017/S0954102010000994.Google Scholar
Elliot, D. H. & Larsen, D. 1993. Mesozoic volcanism in the Transantarctic Mountains: depositional environment and tectonic setting. In Gondwana 8: Assembly, Evolution and Dispersal (eds Findlay, R. H., Unrug, R., Banks, M. R. & Veevers, J. J.), pp. 397414. Rotterdam: A.A. Balkema.Google Scholar
Elsner, M., Schöner, R., Gerdes, S. A. & Gaupp, R. 2013. Reconstruction of the early Mesozoic plate margin of Gondwana by U-Pb ages of detrital zircons from northern Victoria Land. In Antarctica and Supercontinent Evolution (eds Harley, S. L., Fitzsimons, I. C. W. & Zhao, Y.), pp. 211–32. Geological Society of London, Special Publication no. 383, doi.org/10.1144/SP383.5.Google Scholar
Evanoff, E., Terry, D. O., Benton, R. C. & Minkler, H. 2010. Field guide to geology of the White River Group in the North Unit of Badlands National Park. South Dakota School of Mines and Technology Bulletin 21, 96127.Google Scholar
Fanning, C. M. & Laudon, T. S. 1999. Mesozoic volcanism, plutonism and sedimentation in eastern Ellsworth Land, West Antarctica. Eighth International Symposium on Antarctic Earth Sciences, Wellington, New Zealand. Abstracts pp. 102.Google Scholar
Farabee, M. J., Taylor, E. L. & Taylor, T. N. 1989. Pollen and spore assemblages from the Falla Formation (Upper Triassic), Central Transantarctic Mountains, Antarctica. Reviews in Palaeobotany and Palynology 61, 101–38.CrossRefGoogle Scholar
Faure, G. & Hill, R. L. 1973. Age of the Falla Formation (Triassic), Queen Alexandra Range. Antarctic Journal of the United States 8 (5), 264–6.Google Scholar
Fisher, R. V. & Schmincke, H.-U. 1984. Pyroclastic rocks. Berlin: Springer-Verlag, 472 pp.Google Scholar
Francis, P. & Oppenheimer, C. 2004. Volcanoes. Oxford: Oxford University Press, 521 pp.Google Scholar
Gao, H., Humphreys, E. D., Yao, H. & van der Hilst, R. D. 2011. Crust and lithosphere structure of the northwestern U.S. with ambient noise tomography: Terrane accretion and Cascade arc development. Earth and Planetary Science Letters 304, 202–11.Google Scholar
Goldstein, S. J. & Jacobsen, S. B. 1988. Nd and Sr isotopic systematics of river water suspended material: implications for crustal development. Earth and Planetary Science Letters 87, 249–65.Google Scholar
Goodge, J. W. & Fanning, C. M. 2002. Precambrian history of the Nimrod Group, central Transantarctic Mountains. In Antarctica at the Close of a Millennium (eds Gamble, J. A., Skinner, D. N. B. & Henrys, S.), pp. 4350. Royal Society of New Zealand, Bulletin no. 35.Google Scholar
Goodge, J. W. & Fanning, C. M. 2012. Composition and age of the East Antarctic Shield in eastern Wilkes Land determined by proxy from Oligocene–Pleistocene glaciomarine sediment and Beacon Supergroup sandstones, Antarctica. Geological Society of America Bulletin 122, 1135–59.Google Scholar
Goodge, J. W., Fanning, C. M. & Bennet, V. C. 2001. U–Pb evidence of ~1.7 Ga crustal tectonism during the Nimrod Orogeny in the Transantarctic Mountains, Antarctica: implications for Proterozoic plate reconstructions. Precambrian Research 112, 261–88.Google Scholar
Goodge, J. W., Fanning, C. M., Norman, M. D. & Bennett, V. C. 2012. Temporal, isotopic and spatial relations of Early Paleozoic Gondwana-margin arc magmatism, central Transantarctic Mountains, Antarctica. Journal of Petrology 53, 2027–65, doi:10.1093/petrology/egs043.Google Scholar
Goodge, J. W., Myrow, P., Williams, I. S. & Bowring, S. A. 2002. Age and provenance of the Beardmore Group, Antarctica: Constraints on Rodinia supercontinent breakup. Journal of Geology 110, 393406.Google Scholar
Hammer, W. R. & Hickerson, W. J. 1996. Implications of an Early Jurassic vertebrate fauna from Antarctica. Museum of Northern Arizona Bulletin 60, 215–8.Google Scholar
Humphreys, E. 2009. Relation of flat subduction to magmatism and deformation in the western United States. In Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision (eds Kay, S. M., Ramos, V. A. & Dickinson, W. R.), pp. 8598. Geological Society of America, Boulder, Memoir no. 204, doi:10.1130/2009.1204(04).Google Scholar
Hunter, M. A., Riley, T. R., Cantrill, D. J., Flowerdew, M. A. & Millar, I. L. 2006. A new stratigraphy for the Latady Basin, Antarctic Peninsula: Part 1, Ellsworth Land Volcanic Group. Geological Magazine 143, 777–96.CrossRefGoogle Scholar
Ireland, T. R., Flötmann, T., Fanning, C. M., Gibson, G. M. & Preiss, W. V. 1998. Development of the early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogen. Geology 26, 243–6.2.3.CO;2>CrossRefGoogle Scholar
Isbell, J. L. 1999. The Kukri Erosion Surface; a reassessment of its relationship to the rocks of the Beacon Supergroup in the central Transantarctic Mountains, Antarctica. Antarctic Science 11, 228–38.Google Scholar
Jordan, T. A., Ferracioli, F., Ross, N., Corr, H. F. J., Leat, P. T., Bingham, R. G., Rippin, D. M., le Brocq, A. & Siegert, M. J. 2013. Inland extent of the Weddell Sea Rift imaged by new geophysical data. Tectonophysics 585, 137–60.Google Scholar
Kay, S. M., Coira, B. L., Caffe, P. J. & Chen, C-H. 2010. Regional chemical diversity, crustal and mantle sources and evolution of central Andean Puna plateau ignimbrites. Journal of Volcanology and Geothermal Research 198, 81111.Google Scholar
Krissek, L. A., Horner, T. C., Elliot, D. H. & Collinson, J. W. 1992. Stratigraphy and sedimentology of vertebrate bone-bearing beds in the Triassic (and Jurassic?) Fremouw and Falla formations, Beardmore Glacier region, Antarctica. In Recent Progress in Antarctic Earth Science (eds Yoshida, Y., Kaminuma, K. & Shiraishi, K.), pp. 249–56. Tokyo: Terra Scientific Publishing Company.Google Scholar
Kusky, T. M., Windley, B. F., Wang, L., Wang, Z., Li, X. & Zhu, P. 2014. Flat subduction, trench suction, and craton destruction: comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics 630, 208–21, doi: 10.1016/j.tecto.2014.05.028.Google Scholar
Larson, E. E. & Evanoff, E. 1998. Tephrostratigraphy and source of the tufts of the White River sequence. In Depositional Environments, Lithostratigraphy, and Biostratigraphy of the White River and Arikaree Groups (Late Eocene to Early Miocene, North America) (eds Terry, D. O., LaGarry, H. R. & Hunt, R. M.), pp. 114. Geological Society of America, Boulder, Special Paper no. 325.Google Scholar
Lawver, L. A., Dalziel, I. W. D., Norton, I. O., Gahagan, L. M. & Davis, J. 2014. The PLATES 2013 Atlas of Plate Reconstructions (550 Ma to Present Day), PLATES Progress Report No. 367-0214, University of Texas Technical Report no. 200, 212 pp.Google Scholar
Leat, P. T., Flowerdew, M. J., Riley, T. R., Whitehouse, M. J., Scarrow, J. H. & Millar, I. L. 2009. Zircon U-Pb dating of Mesozoic volcanic and tectonic events in north-west palmer Land and south-west Graham Land, Antarctica. Antarctic Science 21, 633–41.Google Scholar
Leat, P. T., Scarrow, J. H. & Millar, I. L. 1995. On the Antarctic Peninsula Batholith. Geological Magazine, 132, 399412.Google Scholar
Lindsay, J. M., Schmitt, A. K., Trumbull, R. S., de Silva, S. L., Siebel, W. & Emmermann, R. 2001. Magmatic evolution of the La Pacana Caldera System, Central Andes, Chile: compositional variation of two cogenetic, large-volume felsic ignimbrites. Journal of Petrology 42, 459–86.Google Scholar
Lipman, P. W. 2000. The central San Juan caldera cluster: Regional geologic framework. In Ancient Lake Creede: Its Volcano-Tectonic Setting, History of Sedimentation, and Relation to Mineralization in the Creede Mining District (eds Bethke, P. M. & Hay, R. L.), pp. 970. Geological Society of America, Boulder, Special Paper no. 346. doi:10.1130/0-8137-2346-9.9.Google Scholar
Lipman, P. W. 2007. Incremental assembly and prolonged consolidation of Cordilleran magma chambers: Evidence from the Southern Rocky Mountain volcanic field. Geosphere 3, 4270, doi:10.1130/GES00061.1.Google Scholar
Ludwig, K. R. 2001. SQUID 1.02, A User's Manual. Berkeley Geochronology Center, Berkeley, Special Publication no. 2.Google Scholar
Ludwig, K. R. 2003. Isoplot/Ex version 3.0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, Special Publication no. 4.Google Scholar
Marsh, J. S., Ewart, A., Milner, S. C., Duncan, A. R. & Miller, R. McG. 2001. The Etendeka Igneous Province: magma types and their stratigraphic distribution with implications for the evolution of the Paraná-Etendeka Flood Basalt Province. Bulletin of Volcanology 62, 464–86.Google Scholar
Marsh, J. S., Hooper, P. R., Rehacek, J., Duncan, R. A. & Duncan, A. R. 1997. Stratigraphy and age of Karoo basalts of Lesotho and implications for correlations within the Karoo igneous province. In Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.), pp. 217–45. American Geophysical Union, Washington DC, Geophysical Monograph no. 100.Google Scholar
Maslanyj, M. P. & Storey, B. C. 1990. Regional aeromagnetic anomalies in Ellsworth Land: crustal structure and Mesozoic microplate boundaries within West Antarctica. Tectonics 9, 1515–32.Google Scholar
Miall, A. D. 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Berlin: Springer, 582 pp.Google Scholar
Mortimer, N. 2004. New Zealand's geological foundations. Gondwana Research 7, 261–72.Google Scholar
Pankhurst, R. J., Leat, P. T., Srugo, P., Rapela, C. W., Márquez, M., Storey, B. C. & Riley, T. R. 1998 a. The Chon Aike province of Patagonia and related rocks in West Antarctica: a silicic large igneous province. Journal of Volcanology and Geothermal Research 81, 113–36.Google Scholar
Pankhurst, R. J., Millar, I. L., Grunow, A. M. & Storey, B. C. 1993. The pre-Cenozoic magmatic history of the Thurston Island crustal block, West Antarctica. Journal of Geophysical Research 98, 11835–50.Google Scholar
Pankhurst, R. J., Riley, T. R., Fanning, C. M. & Kelley, S. P. 2000. Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. Journal of Petrology 41, 605–25.Google Scholar
Pankhurst, R. J., Weaver, S. D., Bradshaw, J. D., Storey, B. C. & Ireland, T. R. 1998 b. Geochronolgy and geochemistry of pre-Jurassic superterranes in Marie Byrd Land, Antarctica. Journal of Geophysical Research 103, 2529–47.Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the interpretation of granitic rocks. Journal of Petrology 25, 956–83.Google Scholar
Peate, D. E. 1997. The Paraná-Etendeka Province. In Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.), pp. 217–45. American Geophysical Union, Washington DC, Geophysical Monograph no. 100.Google Scholar
Picard, M. D. & High, L. R. 1973. Sedimentary Structures of Ephemeral Streams. Elsevier, Amsterdam, Developments in Sedimentology 17, 223 pp.Google Scholar
Read, S. E., Cooper, A. F. & Walker, N. W. 2002. Geochemistry and U-Pb geochronology of the Neoproterozoic-Cambrian Koettlitz Glacier alkaline province. In: Antarctica at the Close of a Millenium (eds Gamble, J., Skinner, D. N. B. & Henrys, S.), pp. 143–51. Royal Society of New Zealand, Bulletin no. 35.Google Scholar
Reidel, S. P., Camp, V. E., Ross, M. E., Wolff, J. A., Martin, B. S., Tolan, T. L. & Wells, R. E. 2013. The Columbia River flood basalt province; stratigraphy, areal extent, volume, and physical volcanology. In The Columbia River Flood Basalt Province (eds Reidel, S. P., Camp, V. E., Ross, M. E., Wolff, J. A., Martin, B. S., Tolan, T. L. & Wells, R. E.), pp. 143. Geological Society of America, Boulder, Special Paper no. 497.CrossRefGoogle Scholar
Reubi, O., Ross, P.-S. & White, J. D. L. 2005. Debris avalanche deposits associated with large igneous province volcanism: an example from the Mawson Formation, central Allan Hills, Antarctica. Geological Society of America Bulletin 117, 1615–28.Google Scholar
Riley, T. R., Flowerdew, M. J. & Whitehouse, M. J. 2012. U-Pb ion-microprobe zircon geochronology from basement inliers of eastern Graham Land, Antarctic Peninsula. Journal of the Geological Society of London 169, 381–93.Google Scholar
Riley, T. R., Leat, P. T., Pankhurst, R. J. & Harris, C. 2001. Origins of large volume rhyolitic volcansim in the Antarctic Peninsula and Patagonia by crustal melting. Journal of Petrology 42, 1043–65.CrossRefGoogle Scholar
Ross, P-S., White, J. D. L. & McClintock, M. K. 2008. Physical volcanology of mafic volcaniclastic deposits and lavas in the Coombs-Allan Hills area, Ferrar large igneous province, Antarctica. Journal of Volcanology and Geothermal Research 172, 3860.Google Scholar
Salisbury, M. J., Jicha, B. R., de Silva, S. L., Singer, B. S., Jiménez, N. C. & Ort, M. H. 2011. 40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province. Geological Society of America Bulletin 123, 821–40.Google Scholar
Schöner, R., Bomfleur, B., Scheidner, J. & Viereck-Götte, L. 2011. A systematic description of the Section Peak Formation in north Victoria Land. Polarforschung 80, 7187.Google Scholar
Schöner, R., Viereck-Götte, L., Scheidner, J. & Bomfleur, B. 2007. Triassic-Jurassic sediments and multiple volcanic events in north Victoria Land, Antarctica: a revised stratigraphic model. In Antarctica: A Keystone in a Changing World (eds Cooper, A. K., Raymond, C. R., et al.), pp. 15. Online proceedings of the 10th ISAES, USGS Open-File Report 2007-1047, Short Research Paper no. 102, doi:10.3133/of2007-1047.srp102.Google Scholar
Schumacher, R. & Schmincke, H.-U. 1995. Models for the origin of accretionary lapilli. Bulletin of Volcanology 56, 626–39.Google Scholar
Self, S. & Sparks, R. S. J. 1978. Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water. Bulletin of Volcanology 41, 196212.CrossRefGoogle Scholar
Sell, B., Ovtcharova, M., Guex, J., Bartolini, A., Jourdan, F., Spangenberg, J. E., Vicente, J-C. & Schaltegger, U. 2014. Evaluating the temporal link between the Karoo LIP and climatic-biotic events of the Toarcian Stage with high-precision U-Pb geochronology. Earth and Planetary Science Letters 408, 4856.Google Scholar
Smith, G. A. 1987. Sedimentology of volcanism-induced aggradation in fluvial basins: examples from the Pacific Northwest, U.S.A. In Recent Developments in Fluvial Sedimentology (eds Ethridge, F. G., Flores, R. M., Harvey, M. D. & Weaver, J. N.), pp. 217–28. Society of Economic Paleontologists and Mineralogists, Special Publication no. 39.Google Scholar
Smith, G. A. 1991. Facies sequences and geometries in continental volcaniclastic sequences. In Sedimentation in Volcanic Settings (eds Fisher, R. V. & Smith, G. A.), pp. 109–22. Society of Economic Paleontologists and Mineralogists, Special Publication no. 45.Google Scholar
Stanley, K. O. 1976. Sandstone petrofacies in the Cenozoic High Plains sequence, eastern Wyoming and Nebraska. Bulletin of the Geological Society of America 87, 297309.Google Scholar
Storey, B. C., Dalziel, I. W. D., Garrett, S. W., Grunow, A. M., Pankhurst, R. J. & Vennum, W. R. 1988. West Antarctica in Gondwanaland: crustal blocks, reconstruction and breakup processes. Tectonophysics 155, 381–90.Google Scholar
Storey, B. C., Leat, P. T. & Ferris, J. K. 2001. The location of mantle plume centers during the initial stages of Gondwana breakup. In Mantle Plumes: Their Identification through Time (eds Ernst, R. E. & Buchan, K. L.), pp. 7180. Geological Society of America, Boulder, Special Paper no. 352.Google Scholar
Storey, B. C., Vaughan, A. P. M. & Millar, A. P. 1996. Geodynamic evolution of the Antarctic Peninsula during Mesozoic times and its bearing on Weddell Sea history. In Weddell Sea Tectonics and Gondwana Break-up (eds Storey, B. C., King, E. C. & Livermore, R. A.), pp. 87103. Geological Society of London, Special Publication no. 108.Google Scholar
Stump, E. 1995. Ross Orogen of the Transantarctic Mountains. New York: Cambridge University Press, 284 pp.Google Scholar
Sun, S.-S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Svensen, H., Corfu, F., Polteau, S., Hammer, Ø. & Planke, S. 2012. Rapid magma emplacement in the Karoo Large Igneous Province. Earth and Planetary Science Letters 325–326, 19, doi: 1016/j.epsl.2012.01.015.Google Scholar
Tera, F. & Wasserburg, G. J. 1972. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth and Planetary Science Letters 14, 281304.Google Scholar
Tulloch, A. J., Kimbrough, D. L., Landis, C. A., Mortimer, N. & Johnston, M. R. 1999. Relationships between the Book Street Terrane and Median Tectonic Zone (Median Batholith): evidence from Jurassic conglomerates. New Zealand Journal of Geology and Geophysics 42, 279293, doi: 10.1080/00288306.1999.9514845.Google Scholar
Valentine, G. A. & Fisher, R. V. 2000. Pyroclasic surges and blasts. In Encyclopedia of Volcanoes (ed. Sigurdsson, H.), pp. 571–80. New York: Academic Press.Google Scholar
Viereck-Götte, L., Schöner, R., Bomfleur, B. & Schneider, J. 2007. Multiple shallow level sill intrusions coupled with hydromagmatic explosive eruptions marked the initial phase of Ferrar large igneous province magmatism in northern Victoria Land, Antarctica. In Antarctica: A Keystone in a Changing World (eds Cooper, A. K., Raymond, C. R., et al.), pp. 15. Online proceedings of the 10th ISAES, USGS Open-File Report 2007-1047, Short Research Paper no. 104, doi:10.3133/of2007-1047.srp104.Google Scholar
Wandres, A. M. & Bradshaw, J. G. 2005. New Zealand tectonostratigraphy and implications from conglomeratic rocks for the configuration of the SW pacific margin of Gondwana. In: Terrane Processes at the Margins of Gondwana (eds Vaughan, A. P. M., Leat, P. T. & Pankhurst, R. J.), pp. 179216. Geological Society of London, Special Publication no. 246.Google Scholar
Wandres, A. M., Bradshaw, J. D., Weaver, S., Maas, R., Ireland, T. R. & Eby, N. 2004. Provenance analysis using conglomerate clast lithologies: a case study from the Pahau terrane of New Zealand. Sedimentary Geology 167, 5789.Google Scholar
Wareham, C. D., Stump, E., Storey, B. C., Millar, I. L. & Riley, T. R. 2001. Petrogenesis of the Cambrian Liv Group, a bimodal volcanic rock suite from the Ross Orogen, Transantarctic Mountains, Antarctica. Geological Society of America Bulletin 113, 360–72.Google Scholar
White, J. D. L. & McClintock, M. K. 2001. Immense vent complex marks flood-basalt eruption in a wet, failed rift: Coombs Hills, Antarctica. Geology 29, 935–8.Google Scholar
Williams, I. S. 1998. U-Th-Pb geochronology by ion microprobe. In Applications of Microanalytical Techniques. Reviews in Economic Geology 7, 1–35.Google Scholar
Wilson, T. J. 1993. Jurassic faulting and magmatism in the Transantarctic Mountains: implications for Gondwana break-up. In Gondwana 8: Assembly, Evolution and Dispersal (eds Findlay, R. H., Unrug, R., Banks, M. R. & Veevers, J. J.), pp. 563–72. Rotterdam: A.A. Balkema.Google Scholar
Young, D. J. & Ryburn, R. J. 1968. The geology of Buckley Island and Darwin Nunataks, Beardmore Glacier, Ross Dependency, Antarctica. New Zealand Journal of Geology and Geophysics 11, 922–39.Google Scholar
Supplementary material: Image

Elliot supplementary material S1

Supplementary Figure

Download Elliot supplementary material S1(Image)
Image 399.6 KB
Supplementary material: Image

Elliot supplementary material S2

Supplementary Figure

Download Elliot supplementary material S2(Image)
Image 456 KB
Supplementary material: File

Elliot supplementary material S3

Elliot supplementary material

Download Elliot supplementary material S3(File)
File 14 KB
Supplementary material: File

Elliot supplementary material S4

Supplementary Table

Download Elliot supplementary material S4(File)
File 38.7 KB
Supplementary material: File

Elliot supplementary material S5

Supplementary Table

Download Elliot supplementary material S5(File)
File 47.1 KB
Supplementary material: File

Elliot supplementary material S6

Supplementary Table

Download Elliot supplementary material S6(File)
File 21 KB
Supplementary material: File

Elliot supplementary material S7

Supplementary Table

Download Elliot supplementary material S7(File)
File 20.9 KB
Supplementary material: File

Elliot supplementary material S8

Supplementary Table

Download Elliot supplementary material S8(File)
File 14.8 KB