Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T17:36:16.025Z Has data issue: false hasContentIssue false

Late Pleistocene and Holocene mid-latitude palaeoclimatic and palaeoenvironmental reconstruction: an approach based on the isotopic record from a travertine formation in the Guadix-Baza basin, Spain

Published online by Cambridge University Press:  23 January 2013

ANTONIO J. PRADO-PÉREZ*
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) Avenida Complutense, no. 40, 28040 Madrid, Spain Centro de Estudios de Técnicas Aplicadas (CETA), Centro de Estudios y Experimentación (CEDEX), C/ Alfonso XII, 3 y 5, 28014 Madrid, Spain
ANTONIO DELGADO HUERTAS
Affiliation:
Laboratorio de Biogeoquímica de Isótopos Estables, Instituto Andaluz de Ciencias de la Tierra IACT(CSIC-UGR), Camino del Jueves s/n 18100 Armilla, Granada, Spain
M. T. CRESPO
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) Avenida Complutense, no. 40, 28040 Madrid, Spain
A. MARTÍN SÁNCHEZ
Affiliation:
Departamento de Física, Universidad de Extremadura, 06071 Badajoz, Spain
LUÍS PÉREZ DEL VILLAR
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) Avenida Complutense, no. 40, 28040 Madrid, Spain
*
Author for correspondence: [email protected]

Abstract

A comprehensive palaeoenvironmental reconstruction of the last 219 ka has been carried out by determining the isotopic signatures (δ18O and δ13C) in 766 samples of a thermogene travertine formation in the Guadix-Baza Tertiary basin (Granada, SE Spain). This travertine formation was dated from ≈ 220 to ≈ 5 ka by means of the alpha-spectrometry technique. Initially, the study of the δ18O values of the travertine formation was carried out because they are excellent indicators of the overall palaeoclimatic condition of a particular site. Likewise, the evolution of δ13C values, which can be directly related to the biomass development of the site, has also been studied. Finally, an integrated study of both isotopic records has been performed, identifying a total of 12 climatic periods based on their palaeoclimatic and palaeoenvironmental conditions. These periods are grouped into four climatic scenarios: scenario A, characterized by warm and dry periods; scenario B, characterized by cold and humid periods; scenario C, constituted by warm and humid periods; and scenario D, which is characterized by cold and dry periods. Palaeoclimatic scenarios A and B mainly characterized the palaeoclimatic evolution of the site, while in northern Europe the palaeoclimatic evolution is mainly characterized by scenarios C and D. Therefore, it is suggested that the palaeoenvironmental evolution at lower latitudes on the Iberian Peninsula is the opposite of that identified in northern Europe. However, the main climatic events identified at higher latitudes are also reflected in the studied area.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceña, M. L., Crespo, M. T., Galán, M. P & Gascón, J. L. 1994. Determination of isotopes of uranium and thorium in low-level environmental samples. Nuclear Instruments and Methods in Physical Research A 339, 302–8.Google Scholar
Alley, R. B., Meese, D. A., Shuman, C. A., Gow, A. J., Taylor, K. C., Grootes, P. M., White, J. W. C., Ram, M., Waddington, E. D., Mayewski, P. A. & Zielinski, G. A. 1993. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas Event. Nature 362, 527–9.Google Scholar
Alonso-Zarza, A. M., Martin-Perez, A., Martin-Garcia, R., Gil-Pena, I., Melendez, A., Martinez-Flores, E., Hellstrom, J. & Munoz-Barco, P. 2011. Structural and host rock controls on the distribution, morphology and mineralogy of speleothems in the Castanar Cave (Spain). Geological Magazine 148, 211–25.Google Scholar
Ammann, B. 2000. Biotic responses to rapid climatic changes: introduction to a multidisciplinary study of the Younger Dryas and minor oscillations on an altitudinal transect in the Swiss Alps. Palaeogeography, Palaeoclimatology, Palaeoecology 159, 191201.Google Scholar
Atkinson, T. C., Harmon, R. S., Smart, P. L. & Waltham, A. C. 1978. Palaeoclimatic and geomorphic implications of 230Th/234U dates on speleothems from Britain. Nature 272, 24–8.CrossRefGoogle Scholar
Augustin, L., Barbante, C., Barnes, P. R. F., Barnola, J. M., Bigler, M., Castellano, E., Cattani, O., Chappellaz, J., Dahl-Jensen, D., Delmonte, B., Dreyfus, G., Durand, G., Falourd, S., Fischer, H., Fluckiger, J., Hansson, M. E., Huybrechts, P., Jugie, R., Johnsen, S. J., Jouzel, J., Kaufmann, P., Kipfstuhl, J., Lambert, F., Lipenkov, V. Y., Littot, G. V. C., Longinelli, A., Lorrain, R., Maggi, V., Masson-Delmotte, V., Miller, H., Mulvaney, R., Oerlemans, J., Oerter, H., Orombelli, G., Parrenin, F., Peel, D. A., Petit, J. R., Raynaud, D., Ritz, C., Ruth, U., Schwander, J., Siegenthaler, U., Souchez, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tabacco, I. E., Udisti, R., Van De Wal, R. S. W., Van Den Broeke, M., Weiss, J., Wilhelms, F., Winther, J. G., Wolff, E. W., Zucchelli, M. & Members, E. C. 2004. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–8.Google ScholarPubMed
Auler, A. S. & Smart, P. L. 2001. Late Quaternary paleoclimate in semiarid northeastern Brazil from U-Series dating of travertine and water-table speleothems. Quaternary Research 552, 159–67.CrossRefGoogle Scholar
Azañón, J. M., García-Dueñas, V. & Goffé, B. 1998. Exhumation of high-pressure metapelites and coeval crustal extension in the Alpujarride complex (Betic Cordillera). Tectonophysics 285, 231–52.Google Scholar
Barber, D. C. 1999. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344–8.Google Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawkesworth, C. J. 2003. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, 3181–99.Google Scholar
Cerling, T. E. 1984. The stable isotopic composition of modern sil carbonate and its relationship to climate. Earth Planetary Science Letters 71, 229–40.Google Scholar
Cerling, T. E. 1991. Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. American Journal of Science 291, 377400.Google Scholar
Coleman, M. L., Sepherd, T. J., Dirham, J. J., Rouse, J. E. & Moore, G. R. 1982. Reduction of water with zinc for hydrogen isotope analyses. Analytical Chemistry 54, 993–5.Google Scholar
Constantin, S., Bojar, A.-V., Lauritzen, S.-E. & Lundberg, J. 2007. Holocene and Late Pleistocene climate in the sub-Mediterranean continental environment: a speleothem record from Poleva Cave (Southern Carpathians, Romania). Palaeogeography, Palaeoclimatology, Palaeoecology 243, 322–38.Google Scholar
Craig, H. 1965. The measurement of oxygen isotope paleotemperatures. In Stable Isotopes in Oceanographic Studies and Paleotemperatures. Proceedings of the Spoleto Conference (ed. Tongiorgi, E.), pp. 324. Pisa: Consiglio Nazionale delle Ricerche.Google Scholar
Deines, P. 1980. The isotopic composition of reduced organic carbon. In Handbook of Environmental Isotope Geochemistry (eds Fritz, P. & Fontes, J. C.), pp. 329406. Amsterdam: Elsevier.Google Scholar
Delgado, A., Nuñez, R., Caballero, E., Jimenez de Cisneros, C. & Reyes, E. 1991. Composición isotópica del agua de lluvia en Granada. IV Congreso de Geoquímica, España 1, 350–8.Google Scholar
Delmas, M., Calvet, M., Gunnell, Y., Braucher, R. & Bourles, D. 2011 Palaeogeography and 10Be exposure-age chronology of Middle and Late Pleistocene glacier systems in the northern Pyrenees: implications for reconstructing regional palaeoclimates. Palaeogeography, Palaeoclimatology, Palaeoecology 305, 109–22.Google Scholar
Denniston, R. F., Gonzalez, L. A., Asmerom, Y., Polyak, V., Ragan, M. K. & Saltzman, M. R. 2001. A high-resolution speleothem record of climatic variability at the Allerød-Younger Dryas transition in Missouri, central United States. Palaeogeography, Palaeoclimatology, Palaeoecology 176, 147–55.Google Scholar
Desprat, S., Goni, M. F. S., Turon, J. L., Duprat, J., Malaize, B. & Peypouquet, J. P. 2006. Climatic variability of Marine Isotope Stage 7: direct land-sea-ice correlation from a multiproxy analysis of a north-western Iberian margin deep-sea core. Quaternary Science Reviews 25, 1010–26.CrossRefGoogle Scholar
Díaz-Hernandez, J. L. & Julia, R. 2006. Geochronological position of badlands and geomorphological patterns in the Guadix-Baza basin (SE Spain). Quaternary Research 65, 467–77.Google Scholar
Díaz-Hernández, J. L., Martín, M. & Juliá, R. 2000. Depósitos travertínicos de Alicún (Depresión de Guadix, Granada, SE de España). Geogaceta 28, 97100.Google Scholar
Dorado Valiño, M., Valdeolmillos Rodríguez, A., Blanca Ruiz Zapata, M., José Gil García, M. & De Bustamante Gutiérrez, I. 2002. Climatic changes since the Late-glacial/Holocene transition in La Mancha Plain (South-central Iberian Peninsula, Spain) and their incidence on Las Tablas de Daimiel marshlands. Quaternary International 93–94, 7384.CrossRefGoogle Scholar
Epstein, S. Y. & Mayeda, T. K. 1953. Variation of the 18O/16O ratio in natural waters. Geochimica et Cosmochimica Acta 4, 213–24.Google Scholar
Estevez, A., Rodríguez Fernández, J., Sanz de Galdeano, C. & Vera, J. A. 1982. Evidencia de una fase compresiva de edad Tortoniense en el sector central de las Cordilleras Béticas. Estudios Geológicos 38, 5560.Google Scholar
Fernández, J., Soria, J. M. & Viseras, C. 1996. Stratigraphic architecture of the Neogene basins in the central sector of the Betic Cordillera (Spain): tectonic control and base level changes. In Tertiary Basins of Spain: The Stratigraphic Record of Crustal Kinematics (eds Friend, P. F. & Dabrio, C. J.), pp. 353–65. Cambridge: Cambridge University Press.Google Scholar
Florschütz, F., Menéndez Amor, J. & Wijmstra, T. A. 1971. Palynology of a thick Quaternary succession in southern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 10, 233–64.Google Scholar
Fontes, J. C. & Edmunds, W. M. 1989. The Use of Environmental Isotope Techniques in Arid Zone Hydrology: A Critical Review. Technical documents in hydrology. Paris: UNESCO, 75 pp.Google Scholar
Ford, D. C. & Williams, P. W. 1989. Karst Geomorphology and Hydrology. London: Chapman and Hall.Google Scholar
Friedli, H., Lotscher, H., Oeschger, H., Siegenthaler, U. & Stauffer, B. 1986. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324, 237–8.Google Scholar
Gasse, F. & Fontes, J.-C. 1989. Palaeoenvironments and palaeohydrology of a tropical closed lake (Lake Asal, Djibouti) since 10,000 yr B.P. Palaeogeography, Palaeoclimatology, Palaeoecology 69, 67102.Google Scholar
Gibbard, P. & Van Kolfschoten, T. 2004. The Pleistocene and Holocene Epochs. In A Geologic Time Scale (eds Gradstein, F., Ogg, J. & Smith, A.), pp. 441–52. Cambridge: Cambridge University Press.Google Scholar
Greenland Ice-Core Project (GRIP) Members. 1993. Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364, 203–7.Google Scholar
Hallstadius, L. 1984. A method for electrodeposition of actinides. Nuclear Instruments and Methods in Physical Research 223, 266–7.Google Scholar
Hennig, G. J., Grün, R. & Brunnacker, K. 1983. Speleothems, travertine, and paleoclimates. Quaternary Research 20, 129.Google Scholar
Horowitz, A. 1987. Subsurface palynostratigraphy and paleoclimates of the Quaternary Jordan Rift Valley Fill, Israel. Israel Journal Earth-Sciences 36, 3144.Google Scholar
Horowitz, A. 1989. Continuous pollen diagrams from the last 3.5 m.y. from Israel: vegetation, climate and correlation with the oxygen isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology 72, 6378.CrossRefGoogle Scholar
Horowitz, A. 2001. The Jordan Rift Valley. Amsterdam: Balkema, 730 pp.Google Scholar
Isarin, R. F. B., Renssen, H. & Koster, E. A. 1997. Surface wind climate during the Younger Dryas in Europe as inferred from aeolian records and model simulations. Palaeogeography, Palaeoclimatology, Palaeoecology 134, 127–48.Google Scholar
Jalut, G., Turu i Michels, V., Dedoubat, J.-J., Otto, T., Ezquerra, J., Fontugne, M., Belet, J. M., Bonnet, L., Garcia de Celis, A., Maria Redondo-Vega, J., Ramon Vidal-Romani, J. & Santos, L. 2010. Palaeoenvironmental studies in NW Iberia (Cantabrian range): vegetation history and synthetic approach of the last deglaciation phases in the western Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 330–50.Google Scholar
Jiménez-Moreno, G. & Anderson, R. S. 2012. Holocene vegetation and climate change recorded in alpine bog sediments from the Borreguiles de la Virgen, Sierra Nevada, southern Spain. Quaternary Research 77, 4453.Google Scholar
Jouzel, J., Masson, V., Cattani, O., Falourd, S., Stievenard, M., Stenni, B., Longinelli, A., Johnsen, S. J., Steffenssen, J. P., Petit, J. R., Schwander, J., Souchez, R. & Barkov, N. I. 2001. A new 27 ka high resolution East Antarctic climate record. Geophysical Research Letters 28, 3199–202.Google Scholar
Jouzel, J. & Community members EPICA. 2004. EPICA Dome C Ice Cores Deuterium Data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2004-038. Boulder, Colorado, USA: NOAA/NGDC Paleoclimatology Program.Google Scholar
Kawamura, K., Nakazawa, T., Aoki, S., Sugawara, S., Fujii, Y. & Watanabe, O. 2003. Atmospheric CO2 variations over the last three glacial-interglacial climatic cycles deduced from the Dome Fuji deep ice core, Antarctica using a wet extraction technique. Tellus 55B, 126–37.Google Scholar
Kim, S. T. & O'Neil, J. R. 1987. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 3461–75.Google Scholar
Krane, K. S. 1988. Introductory Nuclear Physics. New York: John Wiley and Sons.Google Scholar
Lister, G. S. 1988. A 15,000-year isotopic record from Lake Zurich of deglaciation and climatic-change in Switzerland. Quaternary Research 29, 129–41.Google Scholar
Longinelli, A. & Selmo, E. 2003. Isotopic composition of precipitation in Italy: a first overall map. Journal of Hydrology 270, 7588.Google Scholar
Martin-Chivelet, J., Belen Munoz-Garcia, M., Edwards, R. L., Turrero, M. J. & Ortega, A. I. 2011. Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ13C of speleothems. Global and Planetary Change 77, 112.Google Scholar
Martin-Garcia, R., Alonso-Zarza, A. M. & Martin-Perez, A. 2009. Loss of primary texture and geochemical signatures in speleothems due to diagenesis: evidences from Castanar Cave, Spain. Sedimentary Geology 221, 141–49.CrossRefGoogle Scholar
McCrea, J. M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18, 849–57.CrossRefGoogle Scholar
Morellon, M., Valero-Garces, B., Vegas-Vilarrubia, T., Gonzalez-Samperiz, P., Romero, O., Delgado-Huertas, A., Mata, P., Moreno, A., Rico, M. & Pablo Corella, J. 2009. Late glacial and Holocene palaeohydrology in the western Mediterranean region: the Lake Estanya record (NE Spain). Quaternary Science Reviews 28, 2582–99.Google Scholar
Moreno, A., Stoll, H., Jimenez-Sanchez, M., Cacho, I., Valero-Garces, B., Ito, E. & Edwards, R. L. 2010. A speleothem record of glacial (25-11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Global and Planetary Change 71, 218–31.Google Scholar
Morrill, C. & Jacobsen, R. 2005. How widespread were climate anomalies 8200 years ago? Geophysical Research Letters 32, L19701, doi: 10.1029/2005GL023536, 4 pp.Google Scholar
Munoz-Garcia, M. B., Martin-Chivelet, J., Rossi, C., Ford, D. C. & Schwarcz, H. P. 2007. Chronology of termination II and the Last Interglacial Period in North Spain based on stable isotope records of stalagmites from Cueva del Cobre (Palencia). Journal of Iberian Geology 33, 1730.Google Scholar
North Greenland Ice Core Project Members. 2004. High-resolution record of Northern hemisphere climate extending into the last interglacial period. Nature 431, 147–51.CrossRefGoogle Scholar
O'Brien, G. R., Kaufman, D. S., Sharp, W. D., Atudorei, V., Parnell, R. A. & Crossey, L. J. 2006. Oxygen isotope composition of annually banded modern and mid-Holocene travertine and evidence of paleomonsoon floods, Grand Canyon, Arizona, USA. Quaternary Research 65, 366–79.Google Scholar
Oh-Hama, T. 1982. Photosynthetic carbon assimilation in C3- and C4-plants – tracer experiments using 3H, 14C, 13C and 18O. Radioisotopes 31, 480–9.Google Scholar
Ortiz, J. E., Torres, T., Delgado, A., Julia, R., Lucini, M., Llamas, F. J., Reyes, E., Soler, V. & Valle, M. 2004 a. The palaeoenvironmental and palaeohydrological evolution of Padul Peat Bog (Granada, Spain) over one million years, from elemental, isotopic, and molecular organic geochemical proxies. Organic Geochemistry 135, 1295–319.Google Scholar
Ortiz, J. E., Torres, T., Julia, R., Delgado, A., Llamas, F. J., Soler, V. & Delgado, J. 2004 b. Numerical dating algorithms of amino acid racemization ratios from continental ostracodes. Application to the Guadix-Baza Basin (Southern Spain). Quaternary Science Reviews 23, 717–30.Google Scholar
Ortiz, J. E., Torres, T., Delgado, A., Reyes, E., Llamas, J. F., Soler, V. & Raya, J. 2006. Pleistocene paleoenvironmental evolution at continental middle latitude inferred from carbon and oxygen stable isotope analysis of ostracodes from the Guadix-Baza Basin (Granada, SE Spain). Palaeogeography Palaeoclimatology Palaeoecology 240, 536–61.Google Scholar
Ortiz, J. E., Torres, T., Delgado, A., Reyes, E. & Diaz-Bautista, A. 2009. A review of the Tagus river tufa deposits (central Spain): age and palaeoenvironmental record. Quaternary Science Reviews 28, 947–63.Google Scholar
Ortiz, J. E., Torres, T., Delgado, A., Llamas, J. F., Soler, V., Valle, M., Julia, R., Moreno, L. & Diaz-Bautista, A. 2010. Palaeoenvironmental changes in the Padul Basin (Granada, Spain) over the last 1 Ma based on the biomarker content, Palaeogeography, Palaeoclimatology, Palaeoecology 298, 286–99.Google Scholar
Pena, L. D., Frances, G., Diz, P., Esparza, M., Grimalt, J. O., Nombela, M. A. & Alejo, I. 2010. Climate fluctuations during the Holocene in NW Iberia: high and low latitude linkages. Continental Shelf Research 30, 1487–96.Google Scholar
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E. & Stievenard, M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–36.Google Scholar
Pla-Pueyo, S., Gierlowski-Kordesch, E. H., Viseras, C. & Soria, J. M. 2009 Major controls on sedimentation during the evolution of a continental basin: Pliocene-Pleistocene of the Guadix Basin (Betic Cordillera, southern Spain). Sedimentary Geology 219, 97114.Google Scholar
Pons, A. & Reille, M. 1988. The Holocene and Upper Pleistocene pollen record from Padul (Granada, Spain): a new study. Palaeogeography, Palaeoclimatology, Palaeoecology 66, 243–63.Google Scholar
Prado, A. J. 2011. El Sistema Termal de Alicún de las Torres (Granada) como Análogo Natural de Escape de CO2 en Forma de DIC: implicaciones Paleoclimáticas y como Sumidero de CO2. Ph. D. thesis, Universidad Complutense de Madrid, Spain, 411 pp. Published thesis.Google Scholar
Prado-Pérez, A. J. & Pérez del Villar, L. 2011. Dedolomitization as an analogue process for assessing the long-term behaviour of a CO2 deep geological storage: the Alicún de las Torres thermal system (Betic Cordillera, Spain). Chemical Geology 289, 98113.Google Scholar
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M. L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M., Rothlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E. & Ruth, U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research-Atmospheres 111, D06102, doi: 10.1029/2005JD006079, 16 pp.Google Scholar
Reyes, E., del Villar, L. P., Delgado, A., Cortecci, G., Nunez, R., Pelayo, M. & Cozar, J. S. 1998. Carbonatation processes at the El Berrocal natural analogue granitic system (Spain): inferences from mineralogical and stable isotope studies. Chemical Geology 150, 293315.Google Scholar
Rodriguez-Rodriguez, L., Jimenez-Sanchez, M., Dominguez-Cuesta, M. J., Rico, M. T. & Valero-Garces, B. 2011. Last deglaciation in northwestern Spain: new chronological and geomorphologic evidence from the Sanabria region. Geomorphology 135, 4865.Google Scholar
Romanek, C. S., Grossman, E. L. & Morse, J. W. 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56, 419–30.CrossRefGoogle Scholar
Sachs, J. & Anderson, F. 2005. Increased productivity in the subantarctic ocean during Heinrich events. Nature 434, 1118–21.Google Scholar
Shackleton, N. J. & Opdyke, N. D. 1973. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 and 106 year scale. Quaternary Research 3, 3955.Google Scholar
Spötl, C. & Mangini, A. 2002. Stalagmite from the Austrian Alps reveals Dansgaard-Oeschger events during isotope stage 3: implications for the absolute chronology of Greenland ice cores. Earth and Planetary Science Letters 203, 507–18.Google Scholar
Stenni, B., Masson-Delmotte, V., Johnsen, S., Jouzel, J., Longinelli, A., Monnin, E., Rothlisberger, R. & Selmo, E. 2001. An oceanic cold reversal during the last deglaciation. Science 293, 2074–77.Google Scholar
Sun, H. L. & Liu, Z. H. 2010. Wet-dry seasonal and spatial variations in the δ13C and δ18O values of the modern endogenic travertine at Baishuitai, Yunnan, SW China and their paleoclimatic and paleoenvironmental implications. Geochimica et Cosmochimica Acta 74, 1016–29.Google Scholar
Turi, B. 1986. Stable isotope geochemistry of travertine. In Handbook of Environmental Isotope Geochemistry: Vol. 2 The Terrestrial Environment (eds Fritz, B. P. & Fontes, J. Ch.), pp. 207–38. Elsevier.Google Scholar
Valdeolmillos-Rodriguez, A., Dorado-Valino, M., Blanca Ruiz-Zapata, M. & Maria Alonso-Zarza, A. 2011. Middle Pleistocene variations in palaeoclimate, palaeoenvironment and vegetation of the Las Tablas de Daimiel National Park (Spain). Journal of Quaternary Science 26, 128–40.Google Scholar
Valero-Garcés, B., Gonzalez-Samperiz, P., Delgado-Huertas, A., Navas, A., Machin, J. & Kelts, K. 2000. Late glacial and Late Holocene environmental and vegetational change in Salada Mediana, central Ebro Basin, Spain. Quaternary International 73–74, 2946.Google Scholar
Valero-Garcés, B., Gonzalez-Samperiz, P., Navas, A., Machin, J., Mata, P., Delgado-Huertas, A., Bao, R., Moreno, A., Carrion, J. S., Schwalb, A. & Gonzalez-Barrios, A. 2006. Human impact since medieval times and recent ecological restoration in a Mediterranean Lake: the Laguna Zoñar, southern Spain. Journal of Paleolimnology 35, 441–65.Google Scholar
Valero-Garces, B. L. & Moreno, A. 2011. Iberian lacustrine sediment records: responses to past and recent global changes in the Mediterranean region. Journal of Paleolimnology 46, 319–25.Google Scholar
Vera Tomé, F. & Martín Sánchez, A. 1992. Optimal parameters for the electrodeposition of uranium. Journal of Radioanalytical and Nuclear Chemistry 164, 23–8.Google Scholar
Vernet, J. L., Mercier, N., Bazile, F. & Brugal, J.-P. 2008. Travertine and terrace of the middle tarn valley at Millau (south of massif central, Aveyron, France): OSL datings, contribution to chronology and palaeoenvironment. Quaternaire 19, 310.Google Scholar
Viseras, C. & Fernández, J. 1994 Channel migration patterns and related sequences in some alluvial fan systems. Sedimentary Geology 88, 201–17.Google Scholar
Viseras, C., Soria, J. M., Fernández, J. & García García, F. 2005. The Neogene-Quaternary basins of the Betic Cordillera: an overview. Geophysical Research Abstracts 7, 11123–7.Google Scholar
Yamamoto, K., Asami, R. & Iryu, Y. 2010. Carbon and oxygen isotopic compositions of modern brachiopod shells from a warm-temperate shelf environment, Sagami Bay, central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 291, 348–59.Google Scholar
Supplementary material: File

Prado-Pérez Supplementary Material

Appendix

Download Prado-Pérez Supplementary Material(File)
File 139.3 KB
Supplementary material: File

Prado-Pérez Supplementary Material

Appendix

Download Prado-Pérez Supplementary Material(File)
File 72.7 KB
Supplementary material: File

Prado-Pérez Supplementary Material

Appendix

Download Prado-Pérez Supplementary Material(File)
File 575 KB