Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T08:10:55.310Z Has data issue: false hasContentIssue false

Large euenantiornithine birds from the Cretaceous of southern France, North America and Argentina

Published online by Cambridge University Press:  26 September 2007

C. A. WALKER
Affiliation:
Department of Palaeontology, The Natural History Museum London, Cromwell Road, SW7 5BD, London, UK
E. BUFFETAUT
Affiliation:
CNRS, UMR 5125, (Paléoenvironnements et Paléobiosphère), 16 cour du Liégat, 75013 Paris, France
G. J. DYKE
Affiliation:
School of Biology and Environmental Science, University College Dublin, Belfield Dublin 4, Ireland

Abstract

We review historical approaches to the systematics of Enantiornithes, the dominant birds of the second half of the Mesozoic, and describe the forelimb remains of a new Cretaceous euenantiornithine. This taxon is known on the basis of fossil specimens collected from southern France, Argentina and the United States; such a wide geographical distribution is uncharacteristic for Enantiornithes as most taxa are known from single localities. Fossils from the Massecaps locality close to the village of Cruzy (Hérault, southern France), in combination with elements from New Mexico (USA) and from the Argentine locality of El Brete (Salta Province) testify to the global distribution of large flighted euenantiornithine birds in the Late Cretaceous. We discuss the systematics and taxonomy of additional isolated bones of Enantiornithes that were collected from the Argentine El Brete locality in the 1970s; the presence of these flying birds in Cretaceous rocks on both sides of the equator, in both northern and southern hemispheres, further demonstrates the ubiquity of this avian lineage by the latter stages of the Mesozoic.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonaparte, J. F. & Powell, J. E. 1980. A continental assemblage of tetrapods from the Upper Cretaceous beds of El Brete, northwestern Argentina (Sauropoda–Coelurosauria–Carnosauria–Aves). Mémoirs de la Société géologique de France 139, 1928.Google Scholar
Bonaparte, J. F., Salfitty, J. A., Bossi, G. & Powell, J. E. 1977. Hallazgos de dinosaurios y aves cretácicas en la Formación Lecho de El Brete (Salta), próximo al límite con Tucumán. Acta Geologica Lilloana 14, 517.Google Scholar
Brett-Surman, M. K. & Paul, G. S. 1985. A new family of bird-like dinosaurs linking Laurasia and Gondwanaland. Journal of Vertebrate Paleontology 5, 133–8.CrossRefGoogle Scholar
Brodkorb, P. E. 1976. Discovery of a Cretaceous bird, apparently ancestral to the orders Coraciiformes and Piciiformes (Aves: Carinatae). Smithsonian Contributions to Paleobiology 27, 6773.CrossRefGoogle Scholar
Brodkorb, P. E. 1978. Catalogue of fossil birds, Part 5. Bulletin of the Florida State Museum, Biological Sciences 15, 163266.Google Scholar
Buffetaut, E. 1989. Archosaurian reptiles with Gondwanan affinities in the Upper Cretaceous of Europe. Terra Nova 1, 6974.CrossRefGoogle Scholar
Buffetaut, E. 1998. First evidence of enantiornithine birds from the Upper Cretaceous of Europe: postcranial bones from Cruzy (Hérault, southern France). Oryctos 1, 131–6.Google Scholar
Buffetaut, E. 2005. Late Cretaceous vertebrates from the Saint-Chinian area (southern France): a review of previous research and an update on recent finds. Acta Palaeontologica Romaniae 5, 3948.Google Scholar
Buffetaut, E., Le Loeuff, J., Tong, H., Duffaud, S., Cavin, L., Garcia, G., Ward, D. & Association Culturelle, Archeologique et Paleontologique deCruzy. 1999. Un nouveau gisement de vertébrés du Crétacé supérieur à Cruzy (Hérault, Sud de la France). Comptes Rendus de l'Académie des Sciences de Paris 328, 203–8.Google Scholar
Buffetaut, E., Mechin, P. & Mechin-Salessy, A. 1988. Un dinosaure théropode d'affinités gondwaniennes dans le Crétacé superieur de Provence. Comptes Rendus de l'Académie des Sciences de Paris 306, 153–8.Google Scholar
Buffetaut, E., Mechin, P. & Mechin-Salessy, A. 2000. An archaic bird (Enantiornithes) from the Upper Cretaceous of Provence (southern France). Comptes Rendus de l'Académie des Sciences de Paris 331, 557–61.Google Scholar
Cavin, L., Forey, P. L., Buffetaut, E. & Tong, H. 2005. Latest European coelacanth shows Gondwanan affinities. Proceedings of the Royal Society, Biology Letters 1, 176–7.Google ScholarPubMed
Chiappe, L. M. 1991. Cretaceous birds of Latin America. Cretaceous Research 12, 5563.CrossRefGoogle Scholar
Chiappe, L. M. 1992. Enantiornithine tarsometatarsi and the avian affinities of the Late Cretaceous Avisauridae. Journal of Vertebrate Paleontology 12, 344–50.CrossRefGoogle Scholar
Chiappe, L. M. 1993. Enantiornithine (Aves) tarsometatarsi from the Cretaceous Lecho Formation of northwestern Argentina. American Museum Novitates 3083, 127.Google Scholar
Chiappe, L. M. 1995. The first 85 million years of avian evolution. Nature 378, 349–55.CrossRefGoogle Scholar
Chiappe, L. M. 1996. Early avian evolution in the southern hemisphere: fossil record of birds in the Mesozoic of Gondwana. Memoirs of the Queensland Museum 39, 533–56.Google Scholar
Chiappe, L. M. 2002. Basal bird phylogeny: problems and solutions. In Mesozoic Birds: Above the Heads of Dinosaurs (eds Chiappe, L. M. & Witmer, L. M.), pp. 448–72. Berkeley: University of California Press.Google Scholar
Chiappe, L. M. & Calvo, J. O. 1994. Neuquenornis volans, a new Enantiornithes (Aves) from the Upper Cretaceous of Patagonia. Journal of Vertebrate Paleontology 14, 230–46.CrossRefGoogle Scholar
Chiappe, L. M. & Dyke, G. J. 2002. The Cretaceous radiation of birds. Annual Reviews of Ecology and Systematics 33, 91124.CrossRefGoogle Scholar
Chiappe, L. M., Norell, M. A. & Clark, J. M. 2001. A new skull of Gobipteryx minuta (Aves: Enantiornithes) from the Cretaceous of the Gobi Desert. American Museum Novitates 3346, 115.2.0.CO;2>CrossRefGoogle Scholar
Chiappe, L. M., Suzuki, S., Dyke, G. J., Watabe, M., Tsogtbaatar, D. & Barsbold, R. 2006. A new enantiornithine bird from the Late Cretaceous of the Gobi Desert. Journal of Systematic Palaeontology 4, 116.Google Scholar
Chiappe, L. M. & Walker, C. A. 2002. Skeletal morphology and systematics of the Cretaceous euenantiornithes (Ornithothoraces: Enantiornithes). In Mesozoic Birds: Above the Heads of Dinosaurs (eds Chiappe, L. M. & Witmer, L. M.), pp. 240–67. Berkeley: University of California Press.Google Scholar
Clarke, J. A. & Norell, M. A. 2002. The morphology and phylogenetic position of Apsaravis ukhaana from the Late Cretaceous of Mongolia. American Museum Novitates 3387, 146.2.0.CO;2>CrossRefGoogle Scholar
Cracraft, J. 1986. The origin and early diversification of birds. Paleobiology 12, 383–99.CrossRefGoogle Scholar
Elzanowski, A. 1974. Preliminary note on the paleognathous birds from the Upper Cretaceous of Mongolia. Palaeontologica Polonica 30, 103–9.Google Scholar
Elzanowski, A. 1977. Skulls of Gobipteryx (Aves) from the Upper Cretaceous of Mongolia. Palaeontologica Polonica 37, 153–65.Google Scholar
Elzanowski, A. 1981. Embryonic bird skeletons from the late Cretaceous of Mongolia. Palaeontologica Polonica 42, 147–76.Google Scholar
Feduccia, A. 1980. The Age of Birds. Cambridge: Harvard University Press.Google Scholar
Feduccia, A. 1999. The Origin and Evolution of Birds (2nd edition). New Haven: Yale University Press.Google Scholar
Feduccia, A. 2006. Mesozoic aviary takes form. Proceedings of the National Academy of Sciences 103, 56.CrossRefGoogle ScholarPubMed
Fountaine, T. M. R., Benton, M. J., Dyke, G. J. & Nudds, R. L. 2005. The quality of the fossil record of Mesozoic birds. Proceedings of the Royal Society of London, Series B (Biological Sciences) 272, 289–94.Google ScholarPubMed
Garcia, G. & Valentin, X. 2001–2002. Les restes d'oeufs de dinosaures dans les séries continentales du chaînon de Saint-Chinian (Crétacé supérieur, 80–70 Ma). Bulletin de la Société d'Etude des Sciences naturelle de Béziers 19, 1116.Google Scholar
Harrison, C. J. O. & Walker, C. A. 1973. Wyleyia: a new bird humerus from the lower Cretaceous of England. Palaeontology 16, 721–8.Google Scholar
Kurochkin, E. N. 1985. A true carinate bird from the Lower Cretaceous deposits in Mongolia and other evidence of early Cretaceous birds in Asia. Cretaceous Research 6, 271–8.CrossRefGoogle Scholar
Kurochkin, E. N. 1995. Synopsis of Mesozoic birds and early evolution of Class Aves. Archaeopteryx 13, 4766.Google Scholar
Kurochkin, E. N. 1996. A new enantiornithid of the of the Mongolian Late Cretaceous, and a general appraisal of the infraclass Enantiornithes (Aves). Russian Academy of Sciences, Special Issue, 1–50.Google Scholar
Kurochkin, E. N. 1999. A new large enantiornithid from the Upper Cretaceous of Mongolia (Aves, Enantiornithes). In Materials on the History of Fauna of Eurasia (eds Darevskii, I. & Averianov, A.), pp. 130–41. Zoological Institute of the Russian Academy of Sciences, St. Petersburg (in Russian).Google Scholar
Kurochkin, E. N. 2001. New ideas on origin and early evolution of birds. In Achievements and Problems of Ornithology of Northern Eurasia on a Boundary of Centuries (eds Kurochkin, E. N. & Rakhimov, I. I.), pp. 6896. Magrif, Kazan (in Russian with English summary).Google Scholar
Kurochkin, E. N. 2004. The truth about Gobipteryx. In Sixth International Meeting of the Society of Avian Paleontology and Evolution, Abstracts (eds Buffetaut, E. & Loeuff, J. Le), pp. 33–4. Quillan, France.Google Scholar
Linnaeus, C. 1758. Systema Naturae per Regna Tria Naturae. Holmiae, L. Salmi (10th edition).Google Scholar
Martin, L. M. 1983. The origin and early radiation of birds. In Perspectives in Ornithology (eds Brush, A. H. & Clark, G. A. Jr.), pp. 291338. Cambridge University Press.CrossRefGoogle Scholar
Molnar, R. A. 1986. An enantiornithine bird from the Lower Cretaceous of Queensland, Australia. Nature 322, 736–8.CrossRefGoogle Scholar
Nessov, L. A. 1984. Pterosaurs and birds of the late Cretaceous of Central Asia. Paleontological Journal 1, 4757 (in Russian).Google Scholar
Olson, S. L. 1985. The fossil record of birds. In Avian Biology 8 (eds Farner, D. S., King, J. R. & Parkes, K. C..), pp. 79238. New York: Academic Press.CrossRefGoogle Scholar
Ösi, A. 2007. Enantiornithine bird remains from the Late Cretaceous of Hungary. Oryctos (in press).Google Scholar
Rayner, J. M. V. & Dyke, G. J. 2002. Evolution and origin of diversity in the modern avian wing. In Vertebrate Biomechanics and Evolution (eds Bels, V., Gasc, J. P. & Casinos, A..), pp. 297317. London: Bios Scientific Publishers.Google Scholar
Steadman, D. W. 1983. Commentary (on Martin, 1983). In Perspectives in Ornithology (eds Brush, A. H. & Clark, G. A. Jr.), pp. 338–44. Cambridge University Press.Google Scholar
Thulborn, R. 1984. The avian relationship of Archaeopteryx and the origin of birds. Zoological Journal of the Linnean Society 82, 119–58.CrossRefGoogle Scholar
Varricchio, D. J. & Chiappe, L. M. 1995. A new bird from the Cretaceous Two Medicine Formation of Montana. Journal of Vertebrate Paleontology 15, 201–4.CrossRefGoogle Scholar
Walker, C. A. 1981. New subclass of birds from the Cretaceous of South America. Nature 292, 51–3.CrossRefGoogle Scholar
Zhang, F. & Zhou, Z. 2000. A primitive enantiornithine bird and the origin of feathers. Science 290, 1955–9.CrossRefGoogle ScholarPubMed
Zhang, F., Zhou, Z., Hou, L. & Gu, G. 2000. Early diversification of birds – evidence from a new opposite bird. Chinese Science Bulletin 45, 2650–7.Google Scholar