Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T07:52:55.036Z Has data issue: false hasContentIssue false

Kinematics of rock flow in a crustal-scale shear zone: implication for the orogenic evolution of the southwestern Hellenides

Published online by Cambridge University Press:  01 January 2000

P. XYPOLIAS
Affiliation:
Department of Geology, University of Patras, 26500 Patras, Greece
T. DOUTSOS
Affiliation:
Department of Geology, University of Patras, 26500 Patras, Greece

Abstract

Combined shear-sense criteria, finite-strain data and vorticity analyses were used to study the deformation path in a curved crustal-scale shear zone (Phyllite–Quartzite Series) of the southwestern Hellenides. The results are combined with data on the structural evolution of a cover nappe (Pindos thrust belt) to provide new insights into the orogenic evolution of this region.

Ductile deformation within the Phyllite–Quartzite Series was associated with a top-to-the-west-southwest shearing and was partitioned into two structural domains: a root zone and a frontal domain. The root zone is characterized by vertical coaxial stretching, high strain and upward movement of the material, while the frontal domain comprises simple-shear deformation at the base and pure shear at the top. This pattern suggests superposition of pure shear on simple-shear deformation, and implies tectonic extrusion of the material from the root zone.

The initiation of brittle deformation in the Pindos thrust belt was associated with westward translation above the sub-horizontal Pindos Thrust. Later, as the mountain range elevated, normal faulting at high altitudes and migration of thrusting to the west occurred, while east-directed folding and thrusting in the belt started to the east.

According to the proposed model, crustal thickening was taking place throughout the Oligocene and early Miocene, including the subduction of the Apulian beneath the Pelagonian microcontinent and the intracontinental subduction of the Phyllite–Quartzite Series. During the lower Miocene, vertical buoyancy forces led to the successive steepening of the shear zone and the simultaneous duplexing of its basement, facilitating tectonic extrusion of the material from its root zone. Finally, an indentation process caused vertical expulsion of the orogenic wedge and gravity collapse in the brittle crust.

Type
Research Article
Copyright
© 2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)