Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T21:59:32.171Z Has data issue: false hasContentIssue false

Isotopic age determinations on clay minerals from lavas and tuffs of the Derbyshire orefield

Published online by Cambridge University Press:  01 May 2009

P. R. Ineson
Affiliation:
Department of Geology, University of Sheffield
J. G. Mitchell
Affiliation:
School of Physics, University of Newcastle-upon-Tyne

Summary

Episodic hydrothermal mineralization has previously been recognized in the northern section of the Pennine orefield. Igneous rocks from the southern section (the Derbyshire orefield) have yielded isotopic ages, some of which are thought to represent ages of hydrothermal metasomatism (deuteric or subsequent). In order to ascertain whether epicyclic hydrothermal events gave rise to the Derbyshire mineral deposits, samples of highly altered doleritic lava and pumice tuff were collected adjacent to areas of mineralization. Clay-mineral concentrates from 34 samples were dated by the potassium–argon method. The conclusions drawn from these analyses support a hypothesis of repeated hydrothermal alteration of the clay minerals, reflecting at least two episodes of mineralization, one about 270 m.y., the other about 235 m.y. The geo-chronological significance of these and other results is considered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allport, S. 1874. On the microscopic structure and composition of British Carboniferous dolerites. Q. Jl geol. Soc. Lond. 30, 529–67.CrossRefGoogle Scholar
Alsop, J. 1845. On the Toadstones of Derbyshire. Rep. Brit. Assoc. for 1844. Notes & Abstracts, 51–2.Google Scholar
Arnold-Bemrose, H. H. 1894. On the microscopical structure of the Carboniferous dolerites and tuffs of Derbyshire. Q. Jl geol. Soc. Lond. 50, 603–43.CrossRefGoogle Scholar
Arnold-Bemrose, H. H. 1898. On a quartz rock in the Carboniferous Limestone of Derbyshire. Q. Jl geol. Soc. Lond. 54, 169–83.CrossRefGoogle Scholar
Arnold-Bemrose, H. H. 1907. The toadstones of Derbyshire; their field relations and petrography. Q. Jl geol. Soc. Lond. 63, 241–81.CrossRefGoogle Scholar
Cope, F. W. 1949. The Woodale borehole, near Buxton. Abs. Proc. geol. Soc. Lond. No. 1446, p. 24 and Q. Jl geol. Soc. Lond. 105, p. IV.Google Scholar
Dalrymple, G. B. & Lanphere, M. A. 1969. Potassium Argon Dating. W. H. Freeman & Co., San Francisco. 258 pp.+xiv.Google Scholar
Dunham, K. C. 1952 a. Age-relations of the epigenetic mineral deposits of Britain. Trans. geol. Soc. Glasg. 21, 395429.CrossRefGoogle Scholar
Dunham, K. C. 1952 b. Fluorspar. 4th edit. Mem. geol. Surv. Gt. Br., Min. Resources, 4, 143 pp.Google Scholar
Dunham, K. C. & Dines, H. G. 1945. Barium minerals in England and Wales. Wartime Pamph. geol. Surv. Gt. Br. 46, 150 pp.Google Scholar
Dunham, K. C., Fitch, F. J., Ineson, P. R., Miller, J. A. & Mitchell, J. G. 1968. The geochronological significance of argon-40/argon-39 age determinations on White Whin from the northern Pennine orefield. Proc. R. Soc. A. 307, 251–66.Google Scholar
Eden, R. A., Orme, G. R., Mitchell, M. & Shirley, J. 1964. A study of part of the margin of the Carboniferous Limestone ‘massif’ in the Pin Dale area, Derbyshire. Bull. geol. Surv. Gt. Br. 21, 73118.Google Scholar
Fitch, F. J. & Miller, J. A. 1964. The age of the paroxysmal Variscan orogeny in England in ‘The Phanerozoic Time-Scale’. Q. Jl geol. Soc. Lond. 1205, 159–75.Google Scholar
Fitch, F. J., Miller, J. A. & Williams, S. C. 1967. Isotopic ages of British Carboniferous rocks. C.r. 6th Int. Congr. Carb. Strat. Geol. (Sheffield, 1967). Publ. 1970, 2, 771–89.Google Scholar
Ford, T. D. 1967. Some mineral deposits of the Carboniferous Limestone of Derbyshire. In Neves, R. & Downie, C. (Eds): Geological Excursion in the Sheffield Region, pp. 5375. University of Sheffield.Google Scholar
Ford, T. D. 1969. The stratiform ore-deposits of Derbyshire. In James, C. H. (Ed): Sedimentary ores. (Proc. 15th Inter. University geol. congr. Leicester 1967). Department of Geology, University of Leicester.Google Scholar
Francis, E. H. & Woodland, A. W. 1964. The Carboniferous Period in ‘The Phanerozoic Time-Scale’. Q. Jl geol. Soc. Lond. 1205, 221–32.Google Scholar
Ineson, P. R. & Al-Kufaishi, F. A. M. 1970. The minerology and paragenetic sequence of Long Rake Vein at Raper Mine, Derbyshire. Me cian Geol. 3, 337–51.Google Scholar
Ineson, P. R., Richardson, R. T. & Wood, G. H. 1972. A Baryte–Galena vein in the Magnesian Limestone at Whitwell, Derbyshire. Proc. Yorks. geol. Soc. 39 (1), 139149.CrossRefGoogle Scholar
King, R. J. 1968. Mineralization (Sect. F and G) In Sylvester-Bradley, P. C. & Ford, T. D. (Eds): Geology of the East Midlands, pp. 123–37. University of Leicester.Google Scholar
Moorbath, S. 1962. Lead isotope abundance studies on mineral occurrences in the British Isles and their geological significance. Phil. Trans. R. Soc. Series A, 254, 295360.Google Scholar
Sargent, H. C. 1912. On the origin of certain clay-bands in the limestone of the Crich Inlier. Geol. Mag. 9, 406–12.CrossRefGoogle Scholar
Schnellmann, G. A. & Willson, J. D. 1947. Lead–zinc mineralization in north Derbyshire. Trans. Instn. Min. Metall, 56, 549–85.Google Scholar
Shirley, J. 1950. The Stratigraphical Distribution of the Lead–Zinc ores of Millclose Mine, Derbyshire and the future prospects of the area. Rep. XVIII Inter. Geol. Cong., Pt VII, pp. 353–61.Google Scholar
Shirley, J. 1959. The Carboniferous Limestone of the Monyash–Wirksworth Area, Derbyshire. Q. Jl geol. Soc. Lond. 114, 411–29.CrossRefGoogle Scholar
Shirley, J. & Horsfield, E. L. 1945. The structure and ore deposits of the Carboniferous Limestone of the Eyam District, Derbyshire. Q. Jl geol. Soc. Lond. 100, 289310.CrossRefGoogle Scholar
Smith, E. G., Rhys, G. H. & Eden, R. A. 1967. Geology of the country around Chester-field, Matlock and Mansfield. Mem. geol. Surv. Gt. Br. London, 430 pp.+viii.Google Scholar
Stevenson, I. P. & Gaunt, G. D. 1971. Geology of the country around Chapel-en-le-Frith. Mem. geol. Surv. Gt. Br. London, 444 pp.+xii.Google Scholar
Stevenson, I. P., Harrison, R. K. & Snelling, N. J. 1970. Potassium–argon age determinations of the Waterswallows Sill, Buxton, Derbyshire. Proc. Yorks. geol. Soc. 37, 445–7.CrossRefGoogle Scholar
Tomkieff, S. I. 1926. On some chloritic minerals associated with the basaltic Carboniferous rocks of Derbyshire. Mineralog. Mag. 21, 7382.Google Scholar
Triall, J. G. 1940. Notes on the Lower Carboniferous limestones and toadstones at Millclose Mine, Derbyshire. Trans. Inst. Min. Metal. 49, 191229.Google Scholar
Varvill, W. W. 1959. The future of lead–zinc and fluorspar mining in Derbyshire. In The future of non-ferrous mining in Gt. Br. and Ireland (London, Instn. of Min. and Metall. 1959), 175203.Google Scholar
Wilcockson, W. H. 1932. In Fearnsides, W. G., Bisat, W. S., Edwards, W., Lewis, H. P. & Wilcockson, W. H. The geology of the eastern part of the Peak District. Pt. V. Igneous rocks and mineralization of the High Peak of Derbyshire. Proc. Geol. Ass. 43, 184–90.Google Scholar
Wilkinson, P. 1967. Volcanic rocks in the Peak District. In Neves, R. & Downie, C. (Eds): Geological Excursions in the Sheffield Region, pp. 4753. University of Sheffield.Google Scholar