Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T01:13:42.606Z Has data issue: false hasContentIssue false

Is there a time lag between the metamorphism and emplacement of plutons in the Axial Zone of the Pyrenees?

Published online by Cambridge University Press:  13 April 2015

J. J. ESTEBAN*
Affiliation:
Departamento de Geodinámica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, apartado 644, 48080 Bilbao, Spain
A. ARANGUREN
Affiliation:
Departamento de Geodinámica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, apartado 644, 48080 Bilbao, Spain
J. CUEVAS
Affiliation:
Departamento de Geodinámica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, apartado 644, 48080 Bilbao, Spain
A. HILARIO
Affiliation:
Departamento de Geodinámica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, apartado 644, 48080 Bilbao, Spain
J. M. TUBÍA
Affiliation:
Departamento de Geodinámica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, apartado 644, 48080 Bilbao, Spain
A. LARIONOV
Affiliation:
Centre of Isotopic Research, VSEGEI, 199106 St Petersburg, Russia
S. SERGEEV
Affiliation:
Centre of Isotopic Research, VSEGEI, 199106 St Petersburg, Russia
*
Author for correspondence: [email protected]

Abstract

Detailed petrographic and geochemical studies conducted on zircons from the Lys-Caillaouas pluton reveal their igneous and metamorphic affinities. The igneous zircons constrain the emplacement of the pluton to 300±2 Ma. By contrast, the metamorphic zircons yield an older age of 307±3 Ma, which probably dates the thermal peak of the HT/LP Variscan metamorphism. Therefore, a short time lag of c. 7 Ma emerges between the metamorphic climax and emplacement of the pluton in the Axial Zone (Pyrenees).

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aerden, D. G. A. M. 1995. Porphyroblast non-rotation during crustal extension in the Variscan Lys-Caillaouas Massif, Pyrenees. Journal of Structural Geology 17, 709–25.Google Scholar
Arranz, E. & Lago, M. 2004. El plutonismo sin- y tardi-varisco en los Pirineos. In Geología de España (ed. Vera, J. A.), pp. 263–6. Sociedad Geológica de España & Instituto Geológicoy Minero de España.Google Scholar
Autran, A., Fonteilles, M. & Guitard, G. 1970. Rélations entre les intrusions de granitoïdes, l’anatexie et le métamorphisme regional considérés du point de vue du role de l’eau: cas de la chaîne hercynienne de Pyrénées orientales. Bulletin de la Société géologique de France 12, 673731.CrossRefGoogle Scholar
Bickle, M. J., Wickham, S. M., Chapman, H. J. & Taylor, H. P. Jr. 1988. A strontium, neodymium and oxygen isotope study of hydrothermal metamorphism and crustal anatexis in the Trois Seigneurs Massif, Pyrenees, France. Contributions to Mineralogy and Petrology 100, 399417.Google Scholar
Den Brok, S. W. J. 1989. Evidence for pre-Variscan deformation in the Lys-Caillaouas area, Central Pyrenees, France. Geologie en Mijnbouw 68, 377–80.Google Scholar
Carreras, J. & Capella, L. 1994. Tectonic levels in the Palaeozoic basement of the Pyrenees: a review and a new interpretation. Journal of Structural Geology 16, 1509–24.Google Scholar
Castiñeiras, P., Navidad, M., Casas, J. M., Liesa, M. & Carreras, J. 2011. Petrogenesis of Ordovician magmatism in the Pyrenees (Albera and Canigó Massifs) determined on the basis of zircon minor and trace element composition. Journal of Geology 119, 521–34.Google Scholar
Clin, M., Taillfer, F., Pouchan, P. & Muller, A. 1989. Notice Explicative de la Feuille Bagnères-de-Luchon à 1/50000. Orléans: Bureau des Recherches Géologiques et Minières.Google Scholar
Denèle, Y., Laumonier, B., Paquette, J.-L., Olivier, P., Gleizes, G. & Barbey, Y. P. 2014. Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees. In The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust (eds Schulmann, K., Catalán, J. R. Martínez, Lardeaux, J. M., Janousek, V. & Oggiano, G.). Geological Society of London, Special Publication no. 405, published online 26 February 2014. doi: 10.1144/SP405.5 Google Scholar
Ferry, J. M. & Watson, E. B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology 154, 429–37.Google Scholar
Fu, B., Page, Z., Cavosie, A. J., Fournelle, J., Kita, N. R., Lackey, J. S., Wilde, S. A. & Valley, J. W. 2008. Ti-in-zircon thermometry: applications and limitations. Contributions to Mineralogy and Petrology 156, 197215.Google Scholar
Gleizes, G., Crevon, G., Asrat, A. & Barbey, P. 2006. Structure, age and mode of emplacement of the Hercynian Bordères-Louron pluton (Central Pyrenees, France). International Journal of Earth Sciences 95, 1039–52.Google Scholar
Grimes, C. B., John, B. E., Kelemen, P. B., Mazdab, F. K., Wooden, J. L., Cheadle, M. J., Kanghoj, K. & Schwarth, J. J. 2007. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35, 643–6.Google Scholar
Hilario, A., Aranguren, A., Tubía, J. M. & Pinotti, L. 2003. Estructura del plutón sincinemático de Lys (Zona Axial del Pirineo). Geogaceta 34, 51–4.Google Scholar
Hoskin, P. W. O. & Schaltegger, U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry 53, 2755.Google Scholar
Keay, S., Lister, G. & Buick, I. 2001. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics 342, 275312.Google Scholar
Larionov, A. N., Andreichev, V. A. & Gee, D. G. 2004. The Vendian alkaline igneous suite of the northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. & Pease, V. L.), pp. 6974. Geological Society of London, Memoirs no. 30.Google Scholar
Ludwig, K. R. 2001. SQUID 1.02: A User Manual. Berkeley Geochronology Center, Special Publication No 2, 21 pp.Google Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot/Ex, Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No.4, 73 pp.Google Scholar
Majoor, F. J. M. 1988. A Geochronological Study of the Axial Zone of the Central Pyrenees, with Emphasis on Variscan Events and Alpine Resetting. Amsterdam: Verhandeling 6, Zwo Laboratorium voor Isotopen-Geologia, 1117.Google Scholar
Maurel, O., Respaut, J.-P., Monié, P., Arnaud, N. & Brunel, M. 2004. U–Pb emplacement and 40Ar/39Ar cooling ages of the eastern Mont-Louis granite massif (Eastern Pyrenees, France). Comptes Rendus Geosciences 336, 1091–8.Google Scholar
Metcalf, J. R., Fitzgerald, P. G., Baldwin, S., Muñoz, J., Perry, S. E. & Feinberg, E. B. 2009. Thermochronological constraints on the exhumation of the Lys-Caillaouas Massif, West-Central Pyrenees. American Geophysical Union, Fall Meeting, Abstract #T33A-1875.Google Scholar
Olivier, P., Gleizes, G., Paquette, J.-L. & Muñoz Sáez, C. 2008. Structure and U–Pb dating of the Saint-Arnac pluton and the Ansignan charnockite (Agly massif): a cross-section from the upper to the middle crust of the Variscan Eastern Pyrenees. Journal of the Geological Society, London 165, 141–52.Google Scholar
Paquette, J.-L., Gleizes, G., Leblanc, D. & Bouchez, J.-L. 1997. Le granite de Bassiès (Pyrénées): un pluton syntectonique d’âge westphalien. Géochronologie U–Pb sur zircons. Comptes Rendus de l’Académie des Sciences 324, 387–92.Google Scholar
Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26, 2508–18.Google Scholar
Paul, B., Paton, C., Norris, A., Woodhead, J., Hellstrom, J., Hergt, J. & Greig, A. 2012. CellSpace: a module for creating spatially registered laser ablation images within the Iolite freeware environment. Journal of Analytical Atomic Spectrometry 27, 700–6.Google Scholar
Pouget, P., Lamouroux, C., Dahmani, A., Debat, P., Driouch, Y., Mercier, A., Soula, J. C. & Vezat, R. 1989. Typologie et mode de mise en place des roches magmatiques dans les Pyrénées hercyniennes. Geologische Rundschau 78, 537–54.Google Scholar
Pupin, J. P. 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology 73, 207–20.Google Scholar
Roberts, M. P., Pin, C., Clemens, J. D. & Paquette, J.-L. 2000. Petrogenesis of the mafic to felsic plutonic rocks associations: the calc-alkaline Quérigut Complex, French Pyrenees. Journal of Petrology 41, 809–44.Google Scholar
Romer, R. F. & Soler, A. 1995. U–Pb age and lead isotopic characterization of Au-bearing skarn related to the Andorra granite. Mineralium Deposita 30, 374–83.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Sun, S. S. & McDonough, W. F.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Ternet, Y., Majesté-Menjoulàs, C., Canérot, J., Baudin, T., Cochérie, A., Guerrot, C. & Rossi, P. 2004. Notice Explicative, Carta Géologique de la France (1/50000), Feuille Laruns-Somport (1069). Orléans: Bureau des Recherches Géologiques et Minières.Google Scholar
Vanderhaeghe, O., Teyssier, C. & Wysoczanski, R. 1999. Structural and geochronological constraints on the role of partial melting during the formation of the Shuswap metamorphic core complex at the latitude of the Thor-Odin Dome, British Columbia. Canadian Journal of Earth Sciences 36, 917–43.CrossRefGoogle Scholar
Vielzeuf, D. 1996. La crôute hercynienne des Pyrénées: une synthèse. In Synthèse Géologique et Géophysique des Pyrénées Vol. 1 (eds Barnolas, A. & Chiron, J. C.), pp. 568–76. Orléans: Bureau de Recherches Gèologiques et Miniéres; Madrid: Instituto Tecnológico Geominero de España.Google Scholar
Whitney, D. L., Teyssier, C., Fayon, A. K., Hamilton, M. A. & Heizler, M. 2003. Tectonic controls on metamorphism, partial melting, and intrusion: timing and duration of regional metamorphism and magmatism in the Nigde Massif, Turkey. Tectonophysics 376, 3760.Google Scholar
Wickham, S. M. 1987. Crustal anatexis and granite petrogenesis during low-pressure regional metamorphism: the Trois Seigneurs Massif, Pyrenees, France. Journal of Petrology 28, 127–69.Google Scholar
Wooden, J. L., Mazdab, F. K., Barth, A. P., Miller, C. F. & Lowery, L. E. 2006. Temperatures (Ti) and compositional characteristics of zircon: early observations using high mass resolution on the USGS-Stanford SHRIMP-RG. Geochimica et Cosmochimica Acta 70, A707.Google Scholar
Zwart, H. J. 1963. The structural evolution of the Paleozoic of the Pyrenees. Geologische Rundschau 53, 170205.Google Scholar
Zwart, H. J. 1979. The geology of the Central Pyrenees. Leidse Geologische Mededelingen 50, 174.Google Scholar
Supplementary material: File

Esteban supplementary material

Tables S1-S3 and Figure S1

Download Esteban supplementary material(File)
File 847.9 KB