Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T07:24:18.995Z Has data issue: false hasContentIssue false

Global ocean—atmosphere change across the Precambrian—Cambrian transition

Published online by Cambridge University Press:  01 May 2009

M. D. Brasier
Affiliation:
Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3PR, U.K.

Abstract

The late Precambrian and Cambrian world experienced explosive evolution of the biosphere, including the development of biomineral skeletons, and notably of phosphate and siliceous skeletons in the initial stages of the adaptive radiation. Ongoing research indicates profound changes in climate and atmospheric carbon dioxide over this span of time. Glacial conditions of the Varangian epoch occur enigmatically at low latitudes, associated with carbonate rocks. Later changes in palaeogeography, sea level rise and salinity stratification encouraged prolonged ‘greenhouse’ conditions in both latest Precambrian and Cambrian times, with indications of relatively low primary production in the oceans. The Precambrian–Cambrian boundary interval punctuated this trend with evaporites, phosphogenic events and carbon isotope excursions; these suggest widespread eutrophication and conjectured removal of carbon dioxide from the atmosphere. Whatever the cause, nutrient–enriched conditions appear to have coincided with the development of phosphatic and siliceous skeletons among the earliest biomineralized invertebrates.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthur, M. A., Schlanger, S. O. & Jenkyns, H. C. 1987. The Cenomanian–Turonian Oceanic Anoxic Event. II. Palaeoceanographic controls on organic matter production and preservation. In Marine Petroleum Source Rocks (eds Brooks, J. and Fleet, A. J.), pp. 401–20. Special Publication of the Geological Society, London no. 26.Google Scholar
Banerjee, D. M., Schidlowski, M. & Arneth, J. D. 1986. Genesis of upper Proterozoic-Cambrian phosphorite deposits of India: isotope inferences from carbonate fluorapatite, carbonate and organic carbon. Precambrian Research 33, 239–53.CrossRefGoogle Scholar
Bergstrom, J. & Ahlberg, P. 1981. Uppermost Lower Cambrian biostratigraphy in Scania, Sweden. Geologiska Foreningens i Stockholm Forhandlingar 103, 193214.Google Scholar
Brasier, M. D. 1981. Sea-level changes, facies changes and the late Precambrian–early Cambrian evolutionary explosion. Precambrian Research 17, 105–23.Google Scholar
Brasier, M. D. 1985. Evolutionary and geological events across the Precambrian–Cambrian boundary. Geology Today 1, 141–6.CrossRefGoogle Scholar
Brasier, M. D. 1989. On mass extinction and faunal turnover near the end of the Precambrian. In Mass Extinctions: Processes and Evidence (ed. Donovan, S. K.), pp. 7388. New York: Columbia University Press.Google Scholar
Brasier, M. D. 1990 a. Phosphogenic events and skeletal preservation across the Precambrian–Cambrian boundary interval. In Phosphorite Research and Development (eds Notholt, A. G. and Jarvis, I.), pp. 282303. Special Paper of the Geological Society, London no. 52.Google Scholar
Brasier, M. D. 1990 b. Nutrients in the early Cambrian. Nature 347, 521–2.Google Scholar
Brasier, M. D. & Gao, Shuping (eds). The Stratigraphy of China. 4. The Cambrian System. Edinburgh: Scottish Academic Press (In press).Google Scholar
Brasier, M. D., Magaritz, M., Corfield, R., Luo, H., wu, X., Ouyang, L., Jiang, Z., Hamdi, B., he, T. & Fraser, A. G. 1990. The carbon-and oxygen-isotope record of the Precambrian–Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 319–32.CrossRefGoogle Scholar
Broecker, W. S. 1982. Ocean chemistry during glacial time. Geochimica et Cosmochimica Acta 46, 1689–705.CrossRefGoogle Scholar
Codispoti, L. A. 1989. Phosphorus vs. nitrogen limitation of new export production. In Productivity of the Ocean: Present and Past (eds Berger, W. H., Smetacek, V. S. and Wefer, G.), pp. 377–44. Dahlem Workshop Report 44. Chichester: Wiley.Google Scholar
Conway Morris, S. 1986. The community structure of the Middle Cambrian Phyllopod Bed (Burgess Shale). Palaeontology 29, 423–67.Google Scholar
Cook, P. J. & Shergold, J. H. 1986. Proterozoic and Cambrian phosphorites-nature and origin. In Phosphate Deposits of the World. Volume 1. Proterozoic and Cambrian Phosphorites (eds Cook, P. J. and Shergold, J. H.), pp. 369–86. Cambridge: Cambridge University Press.Google Scholar
Cowie, J. W. & Brasier, M. D. (eds) 1989. The Precambrian–Cambrian Boundary. Oxford: Clarendon Press.Google Scholar
Felitsyn, S. B., Sochava, A. V. & Vaganov, P. A. 1989. Ir anomaly at boundary of Ediacara fauna extinction. Abstracts of the 28th International Geological Congress,Washington 1, 178.Google Scholar
Fischer, A. G. & Arthur, M. 1977. Secular variations in the pelagic realm. In Deep Water Carbonate Environments (eds Cook, H. F. and Enos, P.), pp. 1950. Special Publication of the Society of Economic Paleontologists and Mineralogists no. 25.Google Scholar
Frakes, L. A. 1979. Climates throughout Geologic Time. Amsterdam: Elsevier, 310 pp.Google Scholar
Germs, G. J. B. 1983. Implications of a sedimentary facies and depositional environmental analysis of the Nama Group in south west Africa/Namibia. Special Publication of the Geological Society of South Africa 11, 89114.Google Scholar
Glaessner, M. F. 1984. The Dawn of Animal Life. Cambridge: Cambridge University Press, 244 pp.Google Scholar
Grantham, P. J., Lijmbach, G. W. M. & Posthuma, J. 1990. Geochemistry of erude oils in Oman. In Classic Petroleum Provinces (ed. Brooks, J.), pp. 317–28. Special Publication of the Geological Society, London no. 50.Google Scholar
Guan, Baode, wu, Ruitang, Hambrey, M. J. & Gang, Wuchen. 1986. Glacial sediments and erosional pavements near the Cambrian–Precambrian boundary in western Henan province. China. Journal of the Geological Society, London 143, 311–23.Google Scholar
Harland, W. B. 1983. The Proterozoic glacial record. Memoir of the Geological Society of America 161, 279–88.CrossRefGoogle Scholar
Harland, W. B. 1989. Palaeoclimatology. In The Precambrian–Cambrian Boundary (eds Cowie, J. W. and Brasier, M. D.), pp. 199204. Oxford: Clarendon Press.Google Scholar
Hofmann, H. J., Narbonne, G. M. & Aitken, J. D. 1990. Ediacaran remains from intertillite beds in northwestern Canada. Geology 18, 1199–202.Google Scholar
Holser, W. T. 1977. Catastrophic chemical events in the history of the ocean. Nature 267, 403–7.CrossRefGoogle Scholar
Husseini, M. I. & Husseini, S. I. 1990. Origin of the Infracambrian salt basins of the Middle East. In Classic Petroleum Provinces (ed. Brooks, J.), pp. 279–92. Special Publication of the Geological Society, London no. 50.Google Scholar
Jenkyns, H. C. 1985. The early Toarcian and Cenomanian–Turonian anoxic events in Europe: comparisons and contrasts. Geologische Rundschau 74/3, 505–18.Google Scholar
Khomentovsky, V. V. 1986. The Vendian System of Siberia and a standard stratigraphic scale. Geological Magazine 123, 333–48.Google Scholar
Klrschvink, J. L., Magaritz, M., Ripperdan, R. L. & Rozanov, A. Yu. 1991. The Precambrian–Cambrian boundary; magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco, and South China. GSA Today 1, pp. 6971, 87, 91.Google Scholar
Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. 1986. Secular variation in carbon isotoperatios from Upper Proterozoic suecessions of Svalbard and East Greenland. Nature 321, 832–8.Google Scholar
Kontorovitch, A. E., Mandel' Baum, M. M., Surkov, V. S., Trofimuk, A. A. & Zolotov, A. N. 1990. Lena–Tunguska Upper Proterozoic–Palaeozoic petroleum superprovince. In Classic Petroleum Provinces (ed. Brooks, J.), pp. 473–89. Special Publication of the Geological Society, London no. 50.Google Scholar
Landing, E., Narbonne, G. M. & Myrow, P. (eds) 1988. Trace Fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. Bulletin of the New York State Museum no. 463.Google Scholar
McIlreath, I. A. 1977. Accumulation of Middle Cambrian, deep-water limestone debris apron adjacent to a vertical submarine carbonate escarpment, South Rocky Mountains, Canada. Special Publication of the Society of Economic Paleontologists and Mineralogists, Tulsa 25, 113–24.Google Scholar
McKerrow, W. S., Scotese, C. R. & Brasier, M. D. 1992. Early Cambrian Continental reconstructions. Journal of the Geological Society, London (In press)Google Scholar
Parrish, J. T., Zeigler, A. M., Scotese, C. R., Humphre-Ville, R. G. & Kirschvink, J. K. 1986. Proterozoic and Cambrian phosphorites–specialist studies. Early Cambrian palaeogeography, palaeoceanography and phosphorites. In Phosphate Deposits of the World. Volume 1. Proterozoic and Cambrian Phosphorites (eds Cook, P. J. and Shergold, J. H.), pp. 280–94. Cambridge: Cambridge University Press.Google Scholar
Pillola, G. L. 1990. Lithologie et trilobites du Cambrien inférieur du SW de la Sardaigne (Italie): implications paléobiogeographique. Comptes Rendus de l' Académie des Sciences, Paris, Series II 310, 321–8.Google Scholar
Raiswell, R. & Berner, R. A. 1986. Pyrite and organic matter in Phanerozoic normal marine shales. Geochimica et Cosmochimica Acta 50, 1967–76.CrossRefGoogle Scholar
Reigel, W., Loh, H., Maul, B. & Prauss, M. 1986. Effects and causes in a black shale event-the Toarcian Posidonia Shale of NW Germany. In Global Bio-Events (ed. Wallisser, O. J.), pp. 267–76. Berlin: Springer-Verlag.Google Scholar
Roberts, J. D. 1976. Late Precambrian dolomites, Vendian glaciation and synchroneity of Vendian glaciations. Journal of Geology 84, 4763.Google Scholar
Rowland, S. M. & Gangloff, R. A. 1988. Structure and paleoecology of Lower Cambrian reefs. Palaios 3, 111–35.Google Scholar
Rozanov, A. Yu. 1984. The Precambrian–Cambrian boundary in Siberia. Episodes 7, 1219.Google Scholar
Shackleton, N. J. & Pisias, N. G. 1985. Atmospheric carbon dioxide, orbital forcing and climate. American Geophysical Union, Geophysics Monographs 32, 303–17.Google Scholar
Sheldon, R. P. 1989. Evidence for ring systems orbiting Earth in the geologic past. In Phosphorite in India (ed. Banerjee, D. M.), pp. 139–60. Memoir of the Geological Society of India no. 13.Google Scholar
Shergold, J. H. & Brasier, M. D. 1986. Biochronology of Proterozoic and Cambrian phosphorites. In Phosphate Deposits of the World, Volume 1. Proterozoic and Cambrian Phosphorites (eds Cook, P. J. and Shergold, J. H.), pp. 295326. Cambridge: Cambridge University Press.Google Scholar
Sokolov, B. S. & Fedonkin, M. A. 1986. Global biological events in the late Precambrian. In Global Bio-Events (ed. Wallieser, O. H.), pp. 105–8. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Spencer, A. M. 1971. Late Pre-Cambrian Glaciation in Scotland. Memoir of the Geological Society, London no. 6, 100 pp.Google Scholar
Thickpenny, A. 1985. ‘Black Shales’ and early Palaeozoic palaeo-oceanography. Terra Cognita 5, 109.Google Scholar
Thickpenny, A. & Leggett, J. K. 1987. Stratigraphic distribution and palaeo-oceanographic significance of European early Palaeozoic organic-rich sediments. In Marine Petroleum Source Rocks (eds Brooks, J. and Fleet, A.), pp. 301–16. Special Publication of the Geological Society, London no. 26.Google Scholar
Thiersten, H. R. 1989. Inventory of palaeoproductivity records: the mid Cretaceous enigma. In Productivity of the Ocean: Past and Present (eds Berger, W. H., Smetacek, V. S. and Wefer, G.), pp. 355–76. Dahlem Workshop Report no. 44. Chichester: Wiley.Google Scholar
Tucker, M. E. 1989. Carbon isotopes and Precambrian-Cambrian boundary geology, South Australia: ocean basin formation, seawater chemistry and organic evolution. Terra Nova 1, 573–82.CrossRefGoogle Scholar
Vidal, G. 1989. Are late Proterozoic carbonaceous megafossils metaphytic algae or baeteria? Lethaia 22, 375–9.Google Scholar
Williams, G. E. 1975. Late Precambrian glacial climate and the earth's obliquity. Geological Magazine 112, 441–4.Google Scholar
Wolfart, R. 1981. Lower Palaeozoic rocks of the Middle East. In Lower Palaeozoic of the Middle East, Eastern and Southern Africa and Antarctica (ed. Holland, C. H.), pp. 5130. Chichester: Wiley.Google Scholar
Yeats, R. S. & Lawrence, R. D. 1984. Tectonics of the Himalayan Thrust belt in Northern Pakistan. In Marine Geology and Oceanography of the Arabian Sea and Coastal Pakistan (eds Haq, B. U. and Milliman, J. D.), pp. 177–98. New York: Van Nostrand Reinhold.Google Scholar
Zhuravlev, A. Yu. 1986. Evolution of arehaeocyathans and palaeobiologeography of the early Cambrian. Geological Magazine 123, 377–85.Google Scholar