Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T09:37:00.292Z Has data issue: false hasContentIssue false

Geological history of bathyal echinoid faunas, with a new genus from the late Cretaceous of Italy

Published online by Cambridge University Press:  21 September 2012

ANDREW B. SMITH*
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
*

Abstract

The Scaglia Rossa of central and northern Italy yields a late Cretaceous bathyal echinoid fauna. Comparison with Jurassic and Cenozoic bathyal faunas highlights that (i) there have been at least three phases of colonization of bathyal settings from the continental shelves, with successive faunas replacing the earlier; and (ii) bathyal echinoid faunas encompass an increasing range of feeding strategies and greater diversity of taxa through time, paralleling increasing nutrification of the oceans. A new Santonian deep-sea spatangoid, Bathyovulaster disjunctus gen. et sp. nov., is described from sediments deposited at > 1500 m water depth at Gubbio, Umbria–Marche region, Italy.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L. 1840. Catalogus systematicus Ectyporum Echinodermatum fossilium Musei Neocomiensis, secundum ordinem zoologicum dispositus; adjectis synonymis recentioribus, nec non stratis et locis in quibus reperiuntur. Sequuntur characteres diagnostici generum novorum vel minus cognitorum. Neuchâtel: Oliv. Petitpierre, 20 pp.Google Scholar
Airaghi, C. 1903. Echinidi della Scaglia Cretacea Veneta. Memorie della Reale Accademia della Scienze di Torino serie seconda 533, 16330, pls 12.Google Scholar
Airaghi, C. 1907. Un nuovo genere della sottofamiglia delle Echinocorynae. Atti della Societa Italiana di Scienze Naturali e del Museo Civio di Storia Naturale in Milano 45, 107–10.Google Scholar
Airaghi, C. 1931. Fossili della Scaglia Cretacea del Trentino. Atti della Societa Italiana di Scienze Naturali e del Museo Civio di Storia Naturale in Milano 70, 240–4.Google Scholar
Alvarez, W. 2009. The historical record in the Scaglia limestone and Gubbio: magnetic reversals and the Cretaceous–Tertiary mass extinction. Sedimentology 56, 137–48.Google Scholar
Astolfi, G. & Colombara, G. 2003. Geologia e Paleontologia dei Colli Euganei, 2nd ed. Treviso: Edizioni Canova, 238 pp.Google Scholar
Beaulieu, S. E. 2002. Accumulation and fate of phytodetritus on the sea floor. Oceanography and Marine Biology Annual Reviews 40, 171232.Google Scholar
Cardenas, A. L. & Harries, P. J. 2010. Effect of nutrient availability on marine origination rates throughout the Phanerozoic eon. Nature Geoscience 3, 430–4.CrossRefGoogle Scholar
Catullo, T. A. 1827. Saggio di Zoologia fossile delle provincie venete. Padova: Dalla tipografia del Seminario, 348 pp., 8 pls.Google Scholar
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O. & Taylor, F. J. R. 2004. The evolution of modern eukaryotic phytoplankton. Science 305, 354–60.Google Scholar
Gage, J. D. 1987. Growth of the deep-sea irregular sea urchins Echinosigra phiale and Hemiaster expergitus in the Rockall Trough (N. E. Atlantic Ocean). Marine Biology 96, 1930.Google Scholar
Gaillard, C., Neraudeau, D. & Thierry, J. 2011. Tithonia oxfordiana, a new Jurassic irregular echinoid associated with Jurassic seep deposits in south-east France. Palaeontology 54, 735–52.Google Scholar
Galeotti, S., Bellagamba, M., Kaminski, M. A. & Montanari, A. 2002. Deep-sea benthic foraminiferal recolonisation following a volcanoclastic event in the lower Campanian of the Scaglia Rossa Formation (Umbria-Marche Basin, central Italy). Marine Micropaleontology 44, 5776.CrossRefGoogle Scholar
Gallagher, W. B. 2002. Faunal changes across the Cretaceous-Tertiary (K-T) boundary in the Atlantic coastal plain of New Jersey: restructuring the marine community after the K-T mass-extinction event. In Catastrophic Events and Mass Extinctions: Impacts and Beyond (eds Kpeberl, C. & MacLeod, K. G.), pp. 291301. Geological Society of America Special Paper 356.Google Scholar
Giusberti, L., Fantin, M. & Buckeridge, J. 2005. Ovulaster protodecimae, n. sp. (Echinoidea, Spatangoia) and association epifauna (Cirripedia, Verrucidae) from the Danian of northeastern Italy. Rivisat Italiana di Paleontologia e Stratigrafia 111, 453–62.Google Scholar
Kikuchi, Y. & Nikaido, A. 1985. The first occurrence of abyssal echinoid Pourtalesia from the middle Miocene Tatsukuroiso Mudstone in Ibaraki Prefecture, northeastern Honshu, Japan. Annual Report of the Institute of Geoscience, The University of Tsukuba 11, 32–4.Google Scholar
Kroh, A. & Smith, A. B. 2010. The phylogeny and classification of post-Palaeozoic echinoids. Journal of Systematic Palaeontology 8, 147212.Google Scholar
Lambert, J. 1896. Note sur quelques Échinides Crétacé de Madagascar. Bulletin de la Société géologique de France, Serie 3 24, 313–32.Google Scholar
Leckie, R. M., Bralower, T. J. & Cashman, R. 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17, 1041, doi: 10.1029/2001PA000623, 29 pp.Google Scholar
Lowrie, W. & Alvarez, W. 1977. Upper Cretaceous-Paleocene magnetic stratigraphy at Gubbio, Italy. III. Upper Cretaceous magnetic stratigraphy. Geological Society of America Bulletin 88, 364–77.Google Scholar
Martin, R. E. 1996. Secular increase in nutrient levels through the Phanerozoic: implications for productivity, biomass, and diversity of the marine biosphere. Palaios 11, 209–19.Google Scholar
Martin, R. E. 2003. The fossil record of biodiversity: nutrients, productivity, habitat area and differential preservation. Lethaia 36, 179–94.Google Scholar
Martin, R. E., Quigg, A. & Podkovyrov, V. 2008. Marine biodiversification in response to evolving phytoplankton stoichiometry. Palaeogeography, Palaeoclimatology, Palaeoecology 258, 277291.Google Scholar
Monechi, S. & Thierstein, H. R. 1985. Late Cretaceous-Eocene nannofossil and magnetostratigraphic correlation near Gubbio, Italy. Marine Micropalaeontology 9, 419–40.Google Scholar
Ooster, W. A. 1865. Synopsis des Echinodermes fossiles des alpes suisses. Pétrifications remarquables des Alpes suisses. Genève et Bâle, Librairie H. Georg, 131 pp.Google Scholar
Premoli Silva, I. & Sliter, W. V. 1995. Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione Section, Gubbio, Italy. Palaeontographica Italica 82, 189.Google Scholar
Rex, M. A., McClain, C. R., Johnson, N. A., Eter, R. J., Allen, J. A., Bouchet, P. & Waren, A. 2005. A source-sink hypothesis for abyssal biodiversity. The American Naturalist 165, 163–78.Google Scholar
Smith, A. B. 2004. Phylogeny and systematics of holasteroid echinoids and their migration into the deep-sea. Palaeontology 47, 123–50.Google Scholar
Smith, A. B. & Crame, J. A. 2012. Echinoderm faunas from the Lower Cretaceous (Aptian–Albian) of Alexander Island, Antarctica. Palaeontology 55, 305–24.Google Scholar
Smith, A. B. & Gale, A. S. 2009. The pre-Messinian deep-sea Neogene echinoid fauna of the Mediterranean: surface productivity controls and biogeographical relationships. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 115–25.CrossRefGoogle Scholar
Smith, A. B., Gallemi, J., Jeffery, C. H., Ernst, G. & Ward, P. D. 1999. Late Cretaceous–early Tertiary echinoids from northern Spain: implications for the Cretaceous–Tertiary extinction event. Bulletin of the Natural History Museum, London (Geology) 55 (2), 81137.Google Scholar
Smith, A. B. & Jeffery, C. H. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392, 6971.Google Scholar
Smith, A. B. & Kroh, A. 2012. The Echinoid Directory. World Wide Web electronic publication. Available at http://www.nhm.ac.uk/research-curation/research/projects/echinoid-directory/ (accessed February, 2012).Google Scholar
Smith, A. B. & Stockley, B. 2005. The geological history of deep sea colonization by echinoids: roles of surface water productivity and deep-water ventilation. Proceedings of the Royal Society B 272, 865–9.Google Scholar
Stow, D. A. V., Rainey, S. C. R., Angell, G., Wezel, F. C. & Savelli, D. 1984. Depositional model for calcilutites: Scaglia Rossa limestones, Umbrio–Marchean Apennines. In Fine-grained Sediments: Deep-water Processes and Facies (eds Stow, D. A. V. & Piper, D. J. W.), pp. 223–41. Geological Society of London, Special Publication no. 15.Google Scholar