Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T17:15:26.549Z Has data issue: false hasContentIssue false

Foreland-directed gravitational collapse along curved thrust fronts: insights from a minor thrust-related shear zone in the Umbria–Marche belt, central-northern Italy

Published online by Cambridge University Press:  14 April 2016

PAOLO PACE*
Affiliation:
Dipartimento di Ingegneria e Geologia, Università degli Studi “G. D'Annunzio” di Chieti-Pescara, Via dei Vestini 31, 66013 Chieti Scalo (CH), Italy
VALERIA PASQUI
Affiliation:
Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di Siena, Via Laterina 8, 53100 Siena, Italy
ENRICO TAVARNELLI
Affiliation:
Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di Siena, Via Laterina 8, 53100 Siena, Italy
FERNANDO CALAMITA
Affiliation:
Dipartimento di Ingegneria e Geologia, Università degli Studi “G. D'Annunzio” di Chieti-Pescara, Via dei Vestini 31, 66013 Chieti Scalo (CH), Italy
*
Author for correspondence: [email protected]

Abstract

Gravitational collapse occurs during the mature evolution of orogenic belts, but its signature is difficult to discriminate in macroscopic structures from that of pre-, syn- or late-/post-orogenic extension, so reliable mesoscopic examples are particularly useful. A composite fabric developed along a lateral thrust ramp in the Apennines reveals mesoscopic normal faults that truncate the thrust surface, overprint the S-fabric and merge downwards in a foreland-directed splay, leaving the thrust footwall undeformed. These relationships indicate syn-/late-thrusting extension, which we interpret as induced by hanging-wall gravitational collapse. Our study provides critical constraints for reconstructing the kinematic evolution of collapsing thrust fronts.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alsop, G. I. 1991. Gravitational collapse and extension along a mid-crustal detachment: the Lough Derg Slide, northwest Ireland. Geological Magazine 128, 345–54.CrossRefGoogle Scholar
Alsop, G. I. 1992. Gravity-driven extensional collapse of an oblique ductile thrust; the Ballybofey Slide, Northwest Ireland. Irish Journal of Earth Sciences 11, 165–75.Google Scholar
Alvarez, W. 1990. Pattern of extensional faulting in pelagic carbonates of the Umbria-Marche Apennines of central Italy. Geology 18, 407–10.2.3.CO;2>CrossRefGoogle Scholar
Barchi, M. R. & Lemmi, M. 1996. Geologia dell'area del M.Coscerno-M. di Civitella (Umbria sud-orientale) . Bollettino della Società Geologica Italiana 115, 601–24.Google Scholar
Berthé, D., Choukroune, P. & Gapais, D. 1979. Orthogneiss mylonite and non-coaxial deformation of granites: the example of the South Armorican shear zone. Journal of Structural Geology 1, 3142.CrossRefGoogle Scholar
Bigi, S. 2006. An example of inversion in a brittle shear zone. Journal of Structural Geology 28, 431–43.CrossRefGoogle Scholar
Boccaletti, M., Calamita, F., Deiana, G., Gelati, R., Massari, F., Moratti, G. & Ricci Lucchi, F. 1990. Migrating foredeep-thrust belt systems in the Northern Apennines and Southern Alps. Palaeogeography, Palaeoclimatology, Palaeoecology 77, 4150.CrossRefGoogle Scholar
Boccaletti, M., Calamita, F. & Viandante, M. G. 2005. La Neo-Catena litosferica appenninica nata a partire dal Pliocene inferiore come espressione della convergenza Africa-Europa. Bollettino della Società Geologica Italiana 124, 87105.Google Scholar
Bonini, M., Sokoutis, D., Mulugeta, G. & Katrivanos, E. 2000. Modelling hanging wall accommodation above rigid thrust ramps. Journal of Structural Geology 22, 1165–79.CrossRefGoogle Scholar
Braathen, A., Bergh, S. G. & Maher, H. D. 1999. Application of a critical wedge taper model to the Tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard. Geological Society of America Bulletin 111, 1468–85.2.3.CO;2>CrossRefGoogle Scholar
Bucci, F., Novellino, R., Tavarnelli, E., Prosser, G., Guzzetti, F., Cardinali, M., Gueguen, E., Guglielmi, P. & Adurno, I. 2014. Frontal collapse during thrust propagation in mountain belts: a case study in the Lucania Apennines, Southern Italy. Journal of the Geological Society, London 171, 571–81.CrossRefGoogle Scholar
Butler, R. W. H. 1992. Thrust zone kinematics in a basement-cover imbricate stack: Eastern Pelvoux massif, French Alps. Journal of Structural Geology 14, 2940.CrossRefGoogle Scholar
Butler, R. W. H., Coward, M. P., Harwood, G. M. & Knipe, R. J. 1987. Salt control on thrust geometry, structural style and gravitational collapse along the Himalayan Mountain Front in the Salt Range of Northern Pakistan. In Dynamical Geology of Salt and Related Structures (eds Lerche, I. & O'Brien, J. J.), pp. 339418. Orlando: Academic Press.CrossRefGoogle Scholar
Butler, R. W. H., Tavarnelli, E. & Grasso, M. 2006. Structural inheritance in mountain belts: an Alpine-Apennine perspective. Journal of Structural Geology 28, 1893–908.CrossRefGoogle Scholar
Calamita, F., Decandia, F. A., Deiana, G. & Fiori, A. P. 1991. Deformation of S-C tectonites in the Scaglia Cinerea Formation in the Spoleto area (South-East Umbria). Bollettino della Società Geologica Italiana 110, 661–65.Google Scholar
Calamita, F., Pace, P. & Satolli, S. 2012. Coexistence of fault-propagation and fault-bend folding in curve-shaped foreland fold-and-thrust belts: examples from the Northern Apennines (Italy). Terra Nova 24, 396406.CrossRefGoogle Scholar
Calamita, F., Satolli, S., Scisciani, V., Esestime, P. & Pace, P. 2011. Contrasting styles of fault reactivation in curved orogenic belts: examples from the Central Apennines (Italy). Geological Society of America Bulletin 123, 1097–111.CrossRefGoogle Scholar
Calamita, F., Satolli, S. & Turtù, A. 2012. Analysis of thrust shear zones in curve-shaped belts: deformation mode and timing of the Olevano-Antrodoco-Sibillini thrust (Central/Northern Apennines of Italy). Journal of Structural Geology 44, 179–87.CrossRefGoogle Scholar
Carmignani, L. & Kligfield, R. 1990. Crustal extension in the northern Apennines: the transition from compression to extension in the Alpi Apuane Core Complex. Tectonics 9, 1275–303.CrossRefGoogle Scholar
Carminati, E. & Doglioni, C. 2012. Alps vs. Apennines: the paradigm of a tectonically asymmetric Earth. Earth-Science Reviews 112, 6796.CrossRefGoogle Scholar
Casas, J. M. & Sàbat, F. 1987. An example of three-dimensional analysis of thrust-related tectonites. Journal of Structural Geology 9, 647–57.CrossRefGoogle Scholar
Centamore, E., Chiocchini, M., Deiana, G., Micarelli, A. & Pieruccini, U. 1969. Considerazioni preliminari su alcune serie mesozoiche dell'Appennino umbro-marchigiano. Memorie della Società Geologica Italiana 8, 237–63.Google Scholar
Ciarapica, G. & Passeri, L. 2002. The paleogeographic duplicity of the Apennines. Bollettino della Società Geologica Italiana 1, 6775.Google Scholar
Clemenzi, L., Molli, G., Storti, F., Muchez, P., Swennen, R. & Torelli, L. 2014. Extensional deformation structures within a convergent orogen: the Val di Lima low-angle normal fault system (Northern Apennines, Italy). Journal of Structural Geology 66, 205–22.CrossRefGoogle Scholar
Cooper, M. A. & Williams, G. D. (eds) 1989. Inversion Tectonics. Geological Society of London, Special Publication no. 44.Google Scholar
Coward, M. P. 1982. Surge zones in the Moine thrust zone of NW Scotland. Journal of Structural Geology 4, 247–56.CrossRefGoogle Scholar
Coward, M. P. 1983. The thrust and shear zones of the Moine thrust zone and the NW Scottish Caledonides. Journal of the Geological Society, London 140, 795811.CrossRefGoogle Scholar
Coward, M. P. & Potts, G. J. 1983. Complex strain patterns developed at the frontal and lateral tips to shear zones and thrust zones. Journal of Structural Geology 5, 383–99.CrossRefGoogle Scholar
Decandia, F. A. 1982. Geologia dei Monti di Spoleto (Prov. di Perugia). Bollettino della Società Geologica Italiana 101, 291315.Google Scholar
Dennis, A. J. & Secor, D. T. 1987. A model for the development of crenulations in shear zones with applications from the southern Appalachian piedmont. Journal of Structural Geology 9, 809–17.CrossRefGoogle Scholar
Delvaux, D. & Sperner, B. 2003. Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program. In New Insights into Structural Interpretation and Modelling (ed. Nieuwland, D. A.), pp. 75100. Geological Society of London, Special Publication no. 212.Google Scholar
Dewey, J. F. 1988. Extensional collapse of orogens. Tectonics 7, 1123–39.CrossRefGoogle Scholar
Fossen, H. 2000. Extensional tectonics in the Caledonides: synorogenic or postorogenic? Tectonics 19, 213–24.CrossRefGoogle Scholar
Gamond, J. F. 1994. Normal faulting and tectonic inversion driven by gravity in a thrusting regime. Journal of Structural Geology 16, 19.CrossRefGoogle Scholar
Holdsworth, R. E. 1989. Late brittle deformation in a Caledonian ductile thrust wedge: new evidence for gravitational collapse in the Moine Thrust sheet, Sutherland, Scotland. Tectonophysics 170, 1728.CrossRefGoogle Scholar
Holdsworth, R. E., Strachan, R. A., Alsop, G. I., Grant, C. J. & Wilson, R. W. 2006. Thrust sequences and the significance of low-angle, out-of-sequence faults in the northernmost Moine Nappe and Moine Thrust Zone, NW Scotland. Journal of the Geological Society, London 163, 801–14.CrossRefGoogle Scholar
Lister, G. S. & Snoke, A. W. 1984. S-C mylonites. Journal of Structural Geology 6, 617–38.CrossRefGoogle Scholar
Logan, J. M., Dengo, C. A., Higgs, N. G. & Wang, Z. Z. 1992. Fabrics of experimental fault zones: their development and relationship to mechanical behavior. In Fault Mechanics and Transport Properties of Rocks (eds Evans, B. & Wong, B.), pp. 3367. London: Academic Press.Google Scholar
Mantovani, E., Babbucci, D., Tamburelli, C. & Viti, M. 2009. A review on the driving mechanism of the Thyrrenian-Apennines system: implications for the present seismotectonic setting in the Central-Northern Apennines. Tectonophysics 476, 2240.CrossRefGoogle Scholar
Mazzoli, S., Ascione, A., Buscher, J. T., Pignalosa, A., Valente, E. & Zattin, M. 2014. Low-angle normal faulting and focused exhumation associated with late Pliocene change in tectonic style in the southern Apennines (Italy). Tectonics 33, 1802–18.CrossRefGoogle Scholar
Mazzoli, S., Deiana, G., Galdenzi, S. & Cello, G. 2002. Miocene fault-controlled sedimentation and thrust propagation in the previously faulted external zones of the Umbria-Marche Apennines, Italy. In Continental Collision and the Tectono-Sedimentary Evolution of Forelands (eds Bertotti, G., Schulmann, K. & Cloetingh, S. A. P. L.), pp. 195209. EGU Stephan Mueller Publication Series no. 1.Google Scholar
Mazzoli, S., D'Errico, M., Aldega, L., Invernizzi, C., Shiner, P. & Zattin, M. 2008. Tectonic burial and “young” (<10 Ma) exhumation in the southern Apennines fold-and-thrust belt (Italy). Geology 36, 243–46.CrossRefGoogle Scholar
McClay, K. R., Norton, M. G., Coney, P. & Davis, G. H. 1986. Collapse of the Caledonian orogen and the Old Red Sandstone. Nature 323, 147–9.CrossRefGoogle Scholar
Pace, P. & Calamita, F. 2014. Push-up inversion structures v. fault-bend reactivation anticlines along oblique thrust ramps: examples from the Apennines fold-and-thrust belt (Italy). Journal of the Geological Society, London 171, 227–38.CrossRefGoogle Scholar
Pace, P. & Calamita, F. 2015. Coalescence of fault-bend and fault-propagation folding in curved thrust systems: an insight from the Central Apennines, Italy. Terra Nova 27, 175–83.CrossRefGoogle Scholar
Pace, P., Calamita, F. & Tavarnelli, E. 2015. Brittle–ductile shear zones along inversion-related frontal and oblique thrust ramps: insights from the Central-Northern Apennines curved thrust system (Italy). In Ductile Shear Zones: From Micro- to Macro-scales (eds Mukherjee, S. & Mulchrone, K. F.), pp. 111–27. Chichester: John Wiley & Sons.CrossRefGoogle Scholar
Pace, P., Di Domenica, A. & Calamita, F. 2014. Summit low-angle faults in the Central Apennines of Italy: younger-on-older thrusts or rotated normal faults? Constraints for defining the tectonic style of thrust belts. Tectonics 33, 756–85.CrossRefGoogle Scholar
Pace, P., Satolli, S. & Calamita, F. 2012. The control of mechanical stratigraphy and inversion tectonics on thrust-related folding along the curved Northern Apennines thrust front. Rendiconti della Società Geologica Italiana 22, 162–5.Google Scholar
Pace, P., Scisciani, V. & Calamita, F. 2011. Styles of Plio-Quaternary positive inversion tectonics in the Central-Southern Apennines and in the Adriatic Foreland. Rendiconti Online della Società Geologica Italiana 15, 92–5.Google Scholar
Pace, P., Scisciani, V., Calamita, F., Butler, R. W. H., Iacopini, D., Esestime, P. & Hodgson, N. 2015. Inversion structures in a foreland domain: seismic examples from the Italian Adriatic Sea. Interpretation 3, SAA161SAA176.CrossRefGoogle Scholar
Patton, T. L., Serra, S., Humphreys, R. J. & Nelson, R. A. 1995. Building conceptual structural models from multiple modelling sources: an example from thrust-ramp studies. Petroleum Geosciences 1, 153–62.CrossRefGoogle Scholar
Platt, J. P. 1984. Balanced cross-sections and their implications for the deep structure of the northwest Alps: discussion. Journal of Structural Geology 6, 603–6.CrossRefGoogle Scholar
Platt, J. P. 1986. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geological Society of America Bulletin 97, 1037–53.2.0.CO;2>CrossRefGoogle Scholar
Platt, L. P. & Leggett, J. K. 1986. Stratal extension in thrust footwalls, Makran Accretionary Prism: implications for thrust tectonics. American Association of Petroleum Geologists Bulletin 70, 191203.Google Scholar
Platt, P. P. & Vissers, R. L. M. 1980. Extensional structures in anisotropic rocks. Journal of Structural Geology 2, 397410.CrossRefGoogle Scholar
Powell, D. & Glendinning, R. W. 1990. Late Caledonian extensional reactivation of a ductile thrust in NW Scotland. Journal of the Geological Society, London 147, 979–87.CrossRefGoogle Scholar
Ragan, D. M. 2009. Structural Geology: An Introduction to Geometrical Techniques. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ramsay, J. G. & Graham, R. H. 1970. Strain variation in shear belts. Canadian Journal of Earth Sciences 7, 786813.CrossRefGoogle Scholar
Ricci Lucchi, F. 1986. The Oligocene to recent foreland basins of the northern Apennines. In Foreland Basins (eds Allen, P. A. & Homewood, P.), pp. 105–39. Special Publication of the International Association for Sedimentologists no. 8.Google Scholar
Roberts, G. P. & Michetti, A. M. 2004. Spatial and temporal variations in growth rates along active normal fault systems: an example from the Lazio-Abruzzo Apennines, central Italy. Journal of Structural Geology 26, 339–76.CrossRefGoogle Scholar
Satolli, S., Pace, P., Viandante, M. G. & Calamita, F. 2014. Lateral variations in tectonic style across cross-strike discontinuities: an example from the Central Apennines belt (Italy). International Journal of Earth Sciences 103, 2301–13.CrossRefGoogle Scholar
Scisciani, V., Agostini, S., Calamita, F., Cilli, A., Giori, I., Pace, P. & Paltrinieri, W. 2010. The influence of pre-existing extensional structures on the Neogene evolution of the Northern Apennines foreland fold-and-thrust belt. Rendiconti Online della Società Geologica Italiana 10, 125–28.Google Scholar
Scisciani, V., Agostini, A., Calamita, F., Pace, P., Cilli, A., Giori, I. & Paltrinieri, W. 2014. Positive inversion tectonics in foreland fold-and-thrust belts: a reappraisal of the Umbria-Marche Northern Apennines (Central Italy) by integrating geological and geophysical data. Tectonophysics 637, 218–37.CrossRefGoogle Scholar
Scisciani, V., Tavarnelli, E. & Calamita, F. 2001. Styles of tectonic inversion within syn-orogenic basins: examples from the Central Apennines, Italy. Terra Nova 13, 321–6.CrossRefGoogle Scholar
Tavani, S., Mencos, J., Bausà, J. & Muñoz, J. A. 2011. The fracture pattern of the Sant Corneli Bóixols oblique inversion anticline (Spanish Pyrenees). Journal of Structural Geology 33, 1662–80.CrossRefGoogle Scholar
Tavani, S., Snidero, M. & Muñoz, J. A. 2014. Uplift-induced residual strain release and late-thrusting extension in the Anaran mountain front anticline, Zagros (Iran). Tectonophysics 636, 257–69.CrossRefGoogle Scholar
Tavani, S., Storti, F., Bausa, J. & Muñoz, J. A. 2012. Late thrusting extensional collapse at the mountain front of the Northern Apennines (Italy). Tectonics 31, TC4019, doi: 10.1029/2011TC003059.CrossRefGoogle Scholar
Tavarnelli, E. 1993. Carta Geologica dell'area Compresa fra la Valnerina e la Conca di Rieti (Umbria Sud-orientale ed alto Lazio). Scale 1:100 000. Dipartimento di Scienze della Terra, Università di Siena.Google Scholar
Tavarnelli, E. 1994. Analisi geometrica e cinematica dei sovrascorrimenti compresi fra la valnerina e la conca di Rieti (Appennino Umbro-Marchigiano-Sabino). Bollettino della società Geologica Italiana 113, 249–59.Google Scholar
Tavarnelli, E. 1996. The effects of pre-existing normal faults on thrust ramp development: an example from the northern Apennines, Italy. Geologische Rundschau 85, 363–71.CrossRefGoogle Scholar
Tavarnelli, E. 1999. Normal faults in thrust sheets: pre-orogenic extension, post-orogenic extension, or both? Journal of Structural Geology 21, 1011–18.CrossRefGoogle Scholar
Tavarnelli, E. & Peacock, D. C. P. 1999. From extension to contraction in syn-orogenic foredeep basins: the Contessa section, Umbria-Marche Apennines, Italy. Terra Nova 11, 5560.CrossRefGoogle Scholar
Tavarnelli, E. & Prosser, G. 2003. The complete Apennines orogenic cycle preserved in a transient single outcrop near San Fele, Lucania, southern Italy. Journal of the Geological Society, London 160, 429–34.CrossRefGoogle Scholar
Tesei, T., Collettini, C., Viti, C. & Barchi, M. R. 2013. Fault architecture and deformation mechanisms in exhumed analogues of seismogenic carbonate-bearing thrusts. Journal of Structural Geology 55, 115.CrossRefGoogle Scholar
Viola, G. & Henderson, J. C. 2010. Inclined transpression at the toe of an arcuate thrust: an example from the Precambrian ‘Mylonite Zone’ of the Sveconorwegian orogeny. In Continental Tectonics and Mountain Building: The Legacy of Peach and Horne (eds Law, R. D., Butler, R. W. H., Holdsworth, R. E., Krabbendam, M. & Strachan, R. A.), pp. 715–37. Geological Society of London, Special Publication no. 335.Google Scholar
Viola, G., Henderson, I. H. C., Bingena, B. & Hendriks, B. W. H. 2011. The Grenvillian-Sveconorwegian orogeny in Fennoscandia: back-thrusting and extensional shearing along the “Mylonite Zone”. Precambrian Research 189, 368–88.CrossRefGoogle Scholar
Wallis, S. R., Platt, J. P. & Knott, S. D. 1993. Recognition of syn-convergence extension in accretionary wedges with examples from the Calabrian arc and the eastern Alps. American Journal of Science 293, 463–95.CrossRefGoogle Scholar
Yin, A. & Kelty, T. K. 1991. Development of normal faults during emplacement of a thrust sheet: an example from the Lewis allochthon, Glacier National Park, Montana (U.S.A.). Journal of Structural Geology 13, 3747.CrossRefGoogle Scholar