Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T21:20:29.241Z Has data issue: false hasContentIssue false

Far-field tectonic effects of the Arabia–Eurasia collision and the inception of the North Anatolian Fault system

Published online by Cambridge University Press:  02 December 2013

IRENE ALBINO
Affiliation:
Department of Biological, Geological and Environmental Sciences, University of Bologna, Piazza di Porta San Donato 1, 40126 Bologna, Italy
WILLIAM CAVAZZA*
Affiliation:
Department of Biological, Geological and Environmental Sciences, University of Bologna, Piazza di Porta San Donato 1, 40126 Bologna, Italy
MASSIMILIANO ZATTIN
Affiliation:
Department of Geosciences, University of Padua, Via Gradenigo 6, 35131 Padua, Italy
ARAL I. OKAY
Affiliation:
Istanbul Technical University, Eurasia Institute of Earth Sciences, Maslak 34469, Istanbul, Turkey
SHOTA ADAMIA
Affiliation:
Institute of Geophysics, 1 M. Alexidze str., 0193 Tbilisi, Georgia
NINO SADRADZE
Affiliation:
Geological Institute, 1/9 M. Alexidze str., 0193 Tbilisi, Georgia
*
Author for correspondence: [email protected]

Abstract

New thermochronological data show that rapid Middle Miocene exhumation occurred synchronously along the Bitlis suture zone and in the southeastern Black Sea region, arguably as a far-field effect of the Arabia–Eurasia indentation. Collision-related strain focused preferentially along the rheological boundary between the multideformed continental lithosphere of northeastern Anatolia and the strong (quasi)oceanic lithosphere of the eastern Black Sea. Deformation in the southeastern Black Sea region ceased in late Middle Miocene time, when coherent westward motion of Anatolia and the corresponding activation of the North and East Anatolian Fault systems mechanically decoupled portions of the foreland from the Arabia–Eurasia collision zone.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamia, S., Zakariadze, G., Chkhotua, T., Sadradze, N., Tsereteli, N., Chabukian, A. & Gventsadze, A. 2011. Geology of the Caucasus: a review. Turkish Journal of Earth Sciences 20, 489544.Google Scholar
Agard, P., Omrani, J., Jolivet, L. & Mouthereau, F. 2005. Convergence history across Zagros (Iran): constraints from collisional an earlier deformation. International Journal of Earth Sciences 94, 401–19.Google Scholar
Alavi, M. 1994. Tectonics of the Zagros orogenic belt of Iran – new data and interpretations. Tectonophysics 229, 211–38.CrossRefGoogle Scholar
Allen, M. B. & Armstrong, H. A. 2008. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology 265, 52–8.Google Scholar
Avdeev, B. & Niemi, N. A. 2011. Rapid Pliocene exhumation of the central Greater Caucasus constrained by low-temperature thermochronology. Tectonics 30, TC2009, doi: 10.1029/2010TC002808.Google Scholar
Berberian, M. & King, G. 1981. Toward a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210–65.CrossRefGoogle Scholar
Cavazza, W., Federici, I., Okay, A. I. & Zattin, M. 2012. Apatite fission-track thermochronology of the Western Pontides (NW Turkey). Geological Magazine 149, 133–40.Google Scholar
Clark, M. K., Farley, K. A., Zheng, D., Wang, Z. & Duvall, A. R. 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U–Th)/He ages. Earth and Planetary Science Letters 296, 7888.Google Scholar
Cloetingh, S., van Wees, J. D., Ziegler, P. A., Lenkey, L., Beekman, F., Tesauro, M., Förster, A., Norden, B., Kaban, M., Hardebol, N., Bonté, D., Genter, A., Guillou-Frottier, L., Ter Voorde, M., Sokoutis, D., Willingshofer, E., Cornu, T. & Worum, G. 2010. Lithosphere tectonics and thermo-mechanical properties: an integrated modelling approach for Enhanced Geothermal Systems exploration in Europe. Earth-Science Reviews 102, 159206.Google Scholar
Copley, A. & Jackson, J. 2006. Active tectonics of the Turkish-Iranian Plateau. Tectonics 25, TC6006, doi: 10.1029/2005TC001906.CrossRefGoogle Scholar
Dayem, K. E., Molnar, P., Clark, M. K. & Houseman, G. A. 2009. Far-field lithospheric deformation in Tibet during continental collision. Tectonics 28, doi: 10.1029/2008TC002344.CrossRefGoogle Scholar
Dewey, J. F., Helman, M. L., Turco, E., Hutton, D. H. W. & Knott, S. D. 1989. Kinematics of the western Mediterranean. In Alpine Tectonics (eds Coward, M. P., Dietrich, D. & Park, R. G.), pp. 265–83. Geological Society of London, Special Publication no. 45.Google Scholar
Dewey, J. F. & Şengor, A. M. C. 1979. Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin 90, 8492.Google Scholar
Dickerson, P. W. 2003. Intraplate mountain building in response to continent-continent collision – the Ancestral Rocky Mountains (North America) and inferences drawn from the Tien Shan (Central Asia). Tectonophysics 365, 129–42.Google Scholar
Donelick, R. A., Ketcham, R. A. & Carlson, W. D. 1999. Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. American Mineralogist 84, 1224–34.Google Scholar
Edwards, R. A., Scott, C. L., Shillington, D. J., Minshull, T. A., Brown, P. J. & White, N. J. 2009. Wide-angle seismic data reveal sedimentary and crustal structure of the Eastern Black Sea. The Leading Edge 28, 1056–65.Google Scholar
Ehlers, T. A., Chaudhri, T., Kumar, S., Fuller, C. W., Willett, S. D., Ketcham, R. A., Brandon, M. T., Belton, D. X., Kohn, B. P., Gleadow, A. J. W., Dunai, T. J. & Fu, F. Q. 2005. Computational tools for low-temperature thermochronometer interpretation. Reviews in Mineralogy & Geochemistry 58, 589622.CrossRefGoogle Scholar
Hall, R. 1976. Ophiolite emplacement and the evolution of the Taurus suture zone, southeastern Turkey. Geological Society America Bulletin 87, 1078–88.Google Scholar
Hüsing, S. K., Zachariasse, W. J., Van Hinsbergen, D. J. J., Krijgsman, W., Inceöz, M., Harzhauser, M., Mandic, O. & Kroh, A. 2009. Oligo-Miocene foreland basin evolution in SE Anatolia: implications for the closure of the eastern Tethys gateway. In Collision and Collapse at the Africa-Arabia-Eurasia Subduction Zone (eds van Hinsbergen, D.J.J., Edwards, M.A. & Govers, R.), pp. 107–32. Geological Society of London, Special Publication no. 311.Google Scholar
Jolivet, L. 2001. A comparison of geodetic and finite strain pattern in the Aegean, geodynamic implications. Earth and Planetary Science Letters 187, 95104.CrossRefGoogle Scholar
Jolivet, L. & Faccenna, C. 2000. Mediterranean extension and the Africa-Eurasia collision. Tectonics 19, 1095–106.Google Scholar
Ketcham, R. A., Donelick, R. A. & Carlson, W. D. 1999. Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. American Mineralogist 84, 1235–55.CrossRefGoogle Scholar
McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, M., Hamburger, K., Hurst, H., Kahle, K., Kastens, G., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksöz, M. N. & Veis, G. 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research 105, 5695–719.Google Scholar
McKenzie, D. 1972. Active tectonics of the Mediterranean region. Geophysical Journal of the Royal Astronomical Society 30, 109–85.Google Scholar
Niu, Y., O'Hara, M. J. & Pearce, J. A. 2003. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrological perspective. Journal of Petrology 44, 851–66.Google Scholar
Okay, A. I. & Tüysüz, O. 1999. Tethyan sutures of northern Turkey. In The Mediterranean Basins: Tertiary Extension within the Alpine Orogen (eds Durand, B., Jolivet, L., Horváth, F. & Séranne, M.), pp. 475515. Geological Society of London, Special Publication no. 156.Google Scholar
Okay, A. I., Zattin, M. & Cavazza, W. 2010. Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 38, 35–8.CrossRefGoogle Scholar
Philip, H., Cisternas, A., Gvishiani, A. & Gorshkov, A. 1989. The Caucasus: an actual example of the initial stages of continental collision. Tectonophysics 161, 121.Google Scholar
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., Arrajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi, R. & Karam, G. 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research 111, B05411, doi: 10.1029/2005JB004051.Google Scholar
Robertson, A. H. F., Parlak, O., Rizaoğlu, T., Ünlügenç, Ü., İnan, N., Tasli, K. & Ustaömer, T. 2007. Tectonic evolution of the South Tethyan ocean: evidence from the Eastern Taurus Mountains (Elazığ region, SE Turkey). In Deformation of Continental Crust (eds Ries, A. C., Butler, R. W. H. & Graham, R. H.), pp. 231–70. Geological Society of London, Special Publication no. 272.Google Scholar
Şengör, A. M. C. 1979. The North Anatolian transform fault: its age, offset and tectonic significance. Journal of the Geological Society, London 136, 269–82.Google Scholar
Şengör, A. M. C., Görür, N. & Şaroğlu, F. 1985. Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Strike-Slip Deformation, Basin Formation and Sedimentation (eds Biddle, K. D. & Christie-Blick, N.), pp. 227–64. Society of Economic Paleontologists and Mineralogists, Special Publication no. 17.Google Scholar
Şengör, A. M. C., Tüysüz, O., İmren, C., Sakinç, M., Eyidoğan, H., Görür, N., Le Pichon, X. & Rangin, C. 2005. The North Anatolian Fault; a new look. Annual Review of Earth and Planetary Sciences 33, 37112.Google Scholar
Sosson, M., Rolland, Y., Müller, C., Danelian, T., Melkonyan, R., Kekelia, S., Adamia, S., Babazadeh, V., Kangarli, T., Avagyan, A., Galoyan, G. & Mosar, J. 2010. Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. In Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform (eds Sosson, M., Kaymakci, N., Stephenson, R. A., Bergerat, F. & Starostenko, V.), pp. 329–52. Geological Society of London, Special Publication no. 340.Google Scholar
Spadini, G., Robinson, A. & Cloetingh, S. 1997. Thermo-mechanical modelling of Black Sea Basin formation, subsidence and sedimentation. In Regional and Petroleum Geology of the Black Sea and Surrounding Areas (ed. Robinson, A.), pp. 1938. American Association of Petroleum Geologists, Memoir 68.Google Scholar
Stampfli, G. M. & Borel, G. D. 2004. The TRANSMED transects in space and time: constrains on the paleotectonic evolution of the Mediterranean domain. In The TRANSMED Atlas – The Mediterranean Region from Crust to Mantle (eds Cavazza, W., Roure, F., Spakman, W., Stampfli, G. M. & Ziegler, P. A.), pp. 5380 (see also Appendix 3). Berlin, Heidelberg: Springer.Google Scholar
Tezcan, A. K. 1995. Geothermal explorations and heat flow in Turkey. In Terrestrial Heat Flow and Geothermal Energy in Asia (eds Gupta, M. L. & Yamano, M.), pp. 2342. Rotterdam: Balkema Publishers.Google Scholar
Vincent, S. J., Carter, A., Lavrishchev, V. A., Rice, S. P., Barabadze, T. G. & Hovius, N. 2011. The exhumation of the western Greater Caucasus: a thermochronometric study. Geological Magazine 148, 121.CrossRefGoogle Scholar
Vincent, S. J., Morton, A. C., Carter, A., Gibbs, S. & Barabadze, T. G. 2007. Oligocene uplift of the Western Greater Caucasus; an effect of initial Arabia-Eurasia collision. Terra Nova 19, 160–6.CrossRefGoogle Scholar
Yilmaz, Y. 1993. New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin 105, 252–71.Google Scholar
Yin, A., Dang, Y.-Q., Zhang, M., Chen, X.-H. & Mcrivette, M. W. 2008. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): structural geology, sedimentation, and regional tectonic reconstruction. Geological Society of America Bulletin 120, 847–76.Google Scholar
Zattin, M., Landuzzi, A., Picotti, V. & Zuffa, G. G. 2000. Discriminating between tectonic and sedimentary burial in a foredeep succession, Northern Apennines. Journal of the Geological Society, London 157, 629–33.Google Scholar
Ziegler, P. A., Cloetingh, S. & Van Wees, J.-D. 1995. Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252, 759.Google Scholar
Ziegler, P. A., Van Wees, J.-D. & Cloetingh, S. 1998. Mechanical controls on collision-related compressional intraplate deformation. Tectonophysics 300, 103–12.CrossRefGoogle Scholar