Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T06:22:01.458Z Has data issue: false hasContentIssue false

Evidence of crystallization in residual, Cl–F-rich, agpaitic, trachyphonolitic magmas and primitive Mg-rich basalt–trachyphonolite interaction in the lava domes of the Phlegrean Fields (Italy)

Published online by Cambridge University Press:  01 November 2011

LEONE MELLUSO*
Affiliation:
Dipartimento di Scienze della Terra, Università di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy
ROBERTO DE' GENNARO
Affiliation:
Centro Interdipartimentale Servizi per Analisi Geomineralogiche (CISAG), Università di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy
LORENZO FEDELE
Affiliation:
Dipartimento di Scienze della Terra, Università di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy
LUIGI FRANCIOSI
Affiliation:
Dipartimento di Scienze della Terra, Università di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy
VINCENZO MORRA
Affiliation:
Dipartimento di Scienze della Terra, Università di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy
*
Author for correspondence: [email protected]

Abstract

The lava domes in the northwestern (Cuma), northern (Punta Marmolite) and central (Accademia) parts of the Phlegrean Fields are the subject of this study. The Cuma and Punta Marmolite trachyphonolitic lava domes are among the oldest Phlegrean products cropping out. The Cuma rocks have an agpaitic groundmass, with early alkali feldspar, Fe-rich clinopyroxene, Fe-edenite and sodalite and late rosenbuschite, fluorite, baddeleyite, pyrochlore, britholite, monazite, aegirine (often Zr-rich) and exceptionally Fe–Mn-rich olivine. The bulk-rock compositions at Cuma have some of the highest concentrations of Zn, Mn, Zr, Nb, Th, U and lanthanides among the Phlegrean Fields rocks, and some of the lowest MgO, P2O5, Sr, Eu and Ba. The Punta Marmolite dome is chemically less evolved, and lacks characteristic agpaitic minerals, but features alkali feldspar, sodalite, nepheline and relatively Na-poor, Fe-rich hedenbergite, with rare Ca-rich plagioclase xenocryst cores. The Accademia dome, belonging to the recent activity, is latitic to trachytic in composition, has highly forsteritic olivine (with chromiferous spinel inclusions), calcic plagioclase and Mg-rich diopside (± phlogopite) xenocrysts in an evolved host rock (with phenocrysts and microlites of alkali feldspar, Fe-rich clinopyroxene, Fe-rich amphibole, magnetite, Fe-rich olivine and accessory baddeleyite, zirconolite and fluorite). There is clear evidence of open-system magma crystallization in the form of interaction between a crystallizing, primitive shoshonitic basalt in a reservoir already filled by rather evolved trachytic magma. The magmatic evolution towards the evolved compositions is dominated by crystallization of more and more Na-rich alkali feldspar in a Cl-, F-rich and relatively H2O-poor environment. Input of mafic magma is evident in many trachytic eruptions of the Phlegrean Fields and even in the products of the Campanian Ignimbrite, but eruptions having mineral assemblages rich in xenocryst phases as well as eruptions virtually free of mafic magma input are also frequently observed throughout the history. This suggests a variable pattern of open- and closed-system crystallization, which may or may not be linked to explosive activity, and that can be caused by intermittent supply of basaltic magma from depth.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T., Erambert, M, Larsen, A. O. & Selbekk, R. S. 2010. Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magmas. Journal of Petrology 51, 2303–25.Google Scholar
Arienzo, I., Moretti, R., Civetta, L., Orsi, G. & Papale, P. 2010. The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios. Chemical Geology 270, 135–47.CrossRefGoogle Scholar
Armienti, P., Barberi, F., Bizouard, H., Clocchiatti, R., Innocenti, F., Metrich, N., Rosi, M. & Sbrana, A. 1983. The Phlegrean Fields: magma evolution within a shallow chamber. Journal of Volcanology and Geothermal Research 17, 289311.CrossRefGoogle Scholar
Avanzinelli, R., Lustrino, M., Mattei, M., Melluso, L. & Conticelli, S. 2009. Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos 113, 213–27.Google Scholar
Bailey, J. C., Sørensen, H., Andersen, T., Kogarko, L. N. & Rose-Hansen, J. 2006. On the origin of microrhythmic layering in arfvedsonite lujavrite from the Ilimaussaq alkaline complex, south Greenland. Lithos 91, 301–18.Google Scholar
Barker, D. S. 1976. Phase relations in the system NaAlSiO4-SiO2-NaCl-H2O at 400°-800°C and 1 kilobar, and petrologic implications. Journal of Geology 84, 97106.CrossRefGoogle Scholar
Barker, D. S. 2001. Calculated silica activities in carbonatitic liquids. Contributions to Mineralogy and Petrology 141, 704–9.Google Scholar
Beccaluva, L., Coltorti, M., Di Girolamo, P., Melluso, L., Milani, L., Morra, V. & Siena, F. 2002. Petrogenesis and evolution of Mt. Vulture alkaline volcanism (Southern Italy). Mineralogy and Petrology 74, 277–97.Google Scholar
Beccaluva, L., Di Girolamo, P., Morra, V. & Siena, F. 1990. Phlegrean Fields volcanism revisited: a critical re-examination of deep eruptive systems and magma evolutionary processes. Neues Jahrbuch Geologische Paläontologische Monatshefte h.5, 257–71.CrossRefGoogle Scholar
Beccaluva, L., Di Girolamo, P. & Serri, G. 1991. Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy. Lithos 26, 191221.CrossRefGoogle Scholar
Boynton, W. V. 1984. Cosmochemistry of the rare earth elements: meteorite studies. In Rare Earth Element Geochemistry (ed. Henderson, P.), pp. 63114. Amsterdam: Elsevier.CrossRefGoogle Scholar
Brotzu, P., Gomes, C. B., Melluso, L., Morbidelli, L., Morra, V. & Ruberti, E. 1997. Petrogenesis of coexisting SiO2-undersaturated to SiO2-oversaturated felsic igneous rocks: the alkaline complex of Itatiaia, southeastern Brazil. Lithos 40, 133–56.CrossRefGoogle Scholar
Brotzu, P., Melluso, L., Bennio, L., Gomes, C. B., Lustrino, M., Morbidelli, L., Morra, V., Ruberti, E., Tassinari, C. C. G. & D'Antonio, M. 2007. Petrogenesis of the Cenozoic potassic alkaline complex of Morro de São João, southeastern Brazil. Journal of South American Earth Sciences 24, 93115.Google Scholar
Carroll, M. R. & Webster, J. D. 1994. Solubilities of sulfur, noble gases, nitrogen, chlorine and fluorine in magmas. Reviews of Mineralogy 30, 231–79.Google Scholar
Cassignol, C. & Gillot, P. Y. 1982. Range and effectiveness of unspiked potassium-argon dating: experimental groundwork and application. In Numerical Dating in Stratigraphy (ed. Odin, G. S.), pp. 159–69. New York: Wiley.Google Scholar
Christiansen, C. C., Johnsen, O. & Makovicky, E. 2003. Crystal chemistry of the rosenbuschite group. The Canadian Mineralogist 41, 1203–24.CrossRefGoogle Scholar
Civetta, L., Carluccio, E., Innocenti, F., Sbrana, A. & Taddeucci, G. 1991. Magma chamber evolution under the Phlegrean Fields during the last 10 ka: trace element and isotope data. European Journal of Mineralogy 3, 415–28.Google Scholar
Civetta, L., Orsi, G., Pappalardo, L., Fisher, R. V., Heiken, G. & Ort, M. 1997. Geochemical zoning, mingling, eruptive dynamics and depositional processes – the Campanian Ignimbrite, Campi Flegrei caldera, Italy. Journal of Volcanology and Geothermal Research 75, 183219.CrossRefGoogle Scholar
D'Antonio, M. 2011. Lithology of the basement underlying the Campi Flegrei caldera: volcanological and petrological constraints. Journal of Volcanology and Geothermal Research 200, 91–8.Google Scholar
D'Antonio, M., Civetta, L. & Di Girolamo, P. 1999. Mantle source heterogeneity in the Campanian Region (South Italy) as inferred from geochemical and isotopic features of mafic volcanic rocks with shoshonitic affinity. Mineralogy and Petrology 67, 163–92.Google Scholar
D'Antonio, M., Civetta, L., Orsi, G., Pappalardo, L., Piochi, M., Carandente, A., de Vita, S., Di Vito, M. A. & Isaia, R. 1999. The present state of the magmatic system of the Phlegrean Fields caldera based on a reconstruction of its behavior in the past 12 ka. Journal of Volcanology and Geothermal Research 91, 247–68.Google Scholar
D'Antonio, M. & Di Girolamo, P. 1994. Petrological and geochemical study of mafic shoshonitic volcanics from Procida-Vivara and Ventotene Islands. Acta Volcanologica 5, 6980.Google Scholar
D'Antonio, M., Tonarini, S., Arienzo, I., Civetta, L. & Di Renzo, V. 2007. Components and processes in the magma genesis of the Phlegrean Volcanic District, southern Italy. In Cenozoic Volcanism in the Mediterranean Area (eds Beccaluva, L., Bianchini, G. & Wilson, M.), pp. 203–20. Geological Society of America Special Paper no. 418.Google Scholar
Deino, A. L., Orsi, G., de Vita, S. & Piochi, M. 2004. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera – Italy) assessed by 40Ar/39Ar dating method. Journal of Volcanology and Geothermal Research 133, 157–70.CrossRefGoogle Scholar
De La Roche, H., Leterrier, P., Grandclaude, P. & Marchal, E. 1980. A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses. Its relationships with current nomenclature. Chemical Geology 29, 183210.CrossRefGoogle Scholar
de Vita, S., Orsi, G., Civetta, L., Carandente, A., D'Antonio, M., Deino, A., di Cesare, T., Di Vito, M. A., Fisher, R. V., Isaia, R., Marotta, E., Necco, A., Ort, M., Pappalardo, L., Piochi, M. & Southon, J. 1999. The Agnano-Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). Journal of Volcanology and Geothermal Research 91, 269301.CrossRefGoogle Scholar
De Vivo, B., Rolandi, G., Gans, P. B., Calvert, A. T., Bohrson, W. A., Spera, F. J. & Belkin, H. E. 2001. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineralogy and Petrology 73, 4765.CrossRefGoogle Scholar
Di Girolamo, P. 1970. Differenziazione gravitativa e curve isochimiche nella “Ignimbrite Campana”. Rendiconti Società Italiana di Mineralogia e Petrologia 26, 344.Google Scholar
Di Girolamo, P., Ghiara, M. R., Lirer, L., Munno, R., Rolandi, G. & Stanzione, D. 1984. Vulcanologia e petrologia dei Campi Flegrei. Bollettino della Società Geologica Italiana 103, 349413.Google Scholar
Di Girolamo, P., Melluso, L., Morra, V. & Secchi, F. A. G. 1995. Evidence of interaction between mafic and intermediate magmas in the youngest activity phase of activity at Ischia Island. Periodico di Mineralogia 64, 393411.Google Scholar
Di Renzo, V., Arienzo, I., Civetta, L., D'Antonio, M., Tonarini, S., Di Vito, M. A. & Orsi, G. 2011. The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chemical Geology 281, 227–41.Google Scholar
Dolejs, D. & Baker, D. R. 2004. Thermodynamic analysis of the system Na2O-K2O-CaO-Al2O3-SiO2-H2O-F2O−1: stability of fluorine-bearing minerals in felsic igneous suites. Contributions to Mineralogy and Petrology 146, 762–78.Google Scholar
D'Oriano, C., Poggianti, E., Bertagnini, A., Cioni, R., Landi, P., Polacci, M. & Rosi, M. 2005. Changes in eruptive style during the A.D. 1538 Monte Nuovo eruption (Phlegrean Fields, Italy): the role of syn-eruptive crystallization. Bulletin of Volcanology 67, 601–21.CrossRefGoogle Scholar
Fedele, L., Insinga, D. D., Calvert, A. T., Morra, V., Perrotta, A. & Scarpati, C. 2011. 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): Toward a new chronostratigraphic reconstruction of the Holocene volcanic activity. Bulletin of Volcanology, published online 5 May 2011. doi:10.1007/s00445-011-0478-8.Google Scholar
Fedele, L., Scarpati, C., Lanphere, M., Melluso, L., Morra, V., Perrotta, A. & Ricci, G. 2008. The Breccia Museo formation, Phlegrean Fields, southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. Bulletin of Volcanology 70, 1189–219.CrossRefGoogle Scholar
Fedele, L., Tarzia, M., Belkin, H. E., De Vivo, B., Lima, A. & Lowenstern, J. B. 2007. Magmatic-hydrothermal fluid interaction and mineralization in alkali syenite nodules from the Breccia Museo pyroclastic deposit, Naples, Italy. In Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites (ed. De Vivo, B.), pp. 125–61. Developments in Volcanology no. 9. Amsterdam: ElsevierGoogle Scholar
Fedele, L., Zanetti, A., Morra, V., Lustrino, M., Melluso, L. & Vannucci, R. 2009. Clinopyroxene/liquid trace element partitioning in natural trachyte–trachyphonolite systems: insights from Phlegrean Fields (southern Italy). Contributions to Mineralogy and Petrology 158, 337–56.Google Scholar
Fowler, S. J., Spera, F. J., Bohrson, W. A., Belkin, H. E. & De Vivo, B. 2007. Phase equilibria on the chemical and physical evolution of the Campanian Ignimbrite. Journal of Petrology 48, 459–93.CrossRefGoogle Scholar
Ghiara, M. R. 1989–90. Studio evolutivo del sistema magmatico flegreo negli ultimi 10 ka. Bollettino della Società dei Naturalisti in Napoli 98–99, 4170.Google Scholar
Hamilton, D. L. & MacKenzie, W. S. 1965. Phase equilibrium studies in the system NaAlSiO4-KAlSiO4-SiO2-H2O. Mineralogical Magazine 34, 214–31.Google Scholar
Insinga, D. D., Calvert, A. T., Lanphere, M., Morra, V., Perrotta, A., Sacchi, M., Scarpati, C., Saburomaru, J. & Fedele, L. 2006. The Late-Holocene evolution of the southwestern sector of Campi Flegrei as inferred by stratigraphy, petrochemistry and 40Ar/39Ar dating. In Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. (ed. De Vivo, B.), pp. 97125. Developments in Volcanology no. 9. Amsterdam: Elsevier.CrossRefGoogle Scholar
Isaia, R., Marianelli, P. & Sbrana, A. 2009. Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: implications for caldera dynamics and future eruptive scenarios. Geophysical Research Letters 36, L21303, doi:10.1029/2009GL040513, 6 pp.CrossRefGoogle Scholar
Kogarko, L. N., Ryabchikov, I. D. & Sørensen, H. 1974. Liquid fractionation. In Alkaline Rocks (ed. Sørensen, H.), pp. 488500. New York: Wiley.Google Scholar
Larsen, L.M. & Sørensen, H. 1987. The Ilimaussaq intrusion – progressive crystallization and formation of layering in an agpaitic magma. In Alkaline Igneous Rocks (eds Fitton, G. & Upton, B. G. J.), pp. 473–88. Geological Society of London, Special Publication no. 30.Google Scholar
Lyubetskaya, T. & Korenaga, J. 2007. Chemical composition of Earth's primitive mantle and its variance: 1. Methods and results. Journal of Geophysical Research 112, B03211, doi: 10.1019/2005JB004223, 21 pp.Google Scholar
Macdonald, R., Baginski, B., Belkin, H. E., Dzierzanowski, P. & Jezak, L. 2008. REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley. Mineralogical Magazine 72, 1147–61.CrossRefGoogle Scholar
Macdonald, R., Baginski, B., Leat, P. T., White, J. C. & Dzierzanowski, P. 2011. Mineral stability in peralkaline silicic rocks: information from trachytes of the Menengai volcano, Kenya. Lithos 125, 553–68.CrossRefGoogle Scholar
Markl, G., Marks, M., Schwinn, G. & Sommer, H. 2001. Phase equilibrium constraints on intensive crystallization parameters of the Ilimaussaq complex, south Greenland. Journal of Petrology 42, 2231–58.Google Scholar
Marks, M., Hettmann, K., Schilling, J., Frost, B. R. & Markl, G. 2011. The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. Journal of Petrology 52, 439–55.Google Scholar
Mazzi, F. & Munno, R. 1983. Calciobetafite (new mineral of the pyrochlore group) and related minerals from Phlegrean Fields, Italy; crystal structures of polymignyte and zirkelite: comparison with pyrochlore and zirconolite. American Mineralogist 68, 262–76.Google Scholar
Melluso, L., Conticelli, S. & de’ Gennaro, R. 2010. Kirschsteinite in the Capo di Bove melilite leucitite lava (cecilite), Alban Hills, Italy. Mineralogical Magazine 74, 887902.Google Scholar
Melluso, L., de’ Gennaro, R. & Rocco, I. 2010. Compositional variations of chromiferous spinel in Mg-rich rocks of the Deccan Traps, India. Journal of Earth System Science 119, 343–63.CrossRefGoogle Scholar
Melluso, L., Morra, V. & de’ Gennaro, R. 2011. Coexisting Ba-feldspar and melilite in a melafoidite lava of Mt. Vulture, Italy: role of volatiles and alkaline earths in bridging a petrological incompatibility. The Canadian Mineralogist 49, 9831000.Google Scholar
Melluso, L., Morra, V. & Di Girolamo, P. 1996. The Mt. Vulture volcanic complex (Italy): evidence for distinct parental magmas and for residual melts with melilite. Mineralogy and Petrology 56, 226–50.Google Scholar
Melluso, L., Morra, V., Perrotta, A., Scarpati, C. & Adabbo, M. 1995. The eruption of The Breccia Museo (Phlegrean Fields, Italy): fractional crystallization processes in a shallow, zoned magma chamber and implications for the eruptive dynamics. Journal of Volcanology and Geothermal Research 68, 325–39.CrossRefGoogle Scholar
Melluso, L., Morra, V., Riziky, H., Veloson, J., Lustrino, M., Del Gatto, L. & Modeste, V. 2007. Petrogenesis of a basanite-tephrite-phonolite volcanic suite in the Bobaomby (Cap d'Ambre) peninsula, northern Madagascar. Journal of African Earth Sciences 49, 2942.CrossRefGoogle Scholar
Mitchell, R. H. & Fareeduddin, 2009. Mineralogy of peralkaline lamproites from the Raniganj coalfield, India. Mineralogical Magazine 73, 457–77.Google Scholar
Morra, V., Calcaterra, D., Cappelletti, P., Colella, A., Fedele, L., de’ Gennaro, R., Langella, A., Mercurio, M. & de’ Gennaro, M. 2010. Urban geology: relationships between geological setting and architectural heritage of the Neapolitan area. In Geology of Italy, Journal of the Virtual Explorer, vol. 36, paper 26 (eds Beltrando, M., Peccerillo, A., Mattei, M., Conticelli, S. & Doglioni, C.), doi: 10.3809/jvirtex.2010.00261.Google Scholar
Mysen, B. O., Cody, G. D. & Smith, A. 2004. Solubility mechanism of fluorine in peralkaline and meta-aluminous silicate glasses and in melts to magmatic temperatures. Geochimica et Cosmochimica Acta 68, 2745–69.CrossRefGoogle Scholar
Nash, W. P., Carmichael, I. S. E. & Johnson, R. W. 1969. The mineralogy and petrology of Mt. Suswa, Kenya. Journal of Petrology 10, 409–39.Google Scholar
Orsi, G., Civetta, L., D'Antonio, M., Di Girolamo, P. & Piochi, M. 1995. Step-filling and development of a three-layer magma chamber: the NYT case history. Journal of Volcanology and Geothermal Research 67, 291312.Google Scholar
Orsi, G., Di Vito, M. A., Selva, J. & Marzocchi, W. 2009. Long-term forecast of eruption style and size at Campi Flegrei caldera (Italy). Earth and Planetary Science Letters 287, 265–76.Google Scholar
Pabst, S., Wörner, G., Civetta, L. & Tesoro, R. 2008. Magma chamber evolution prior to the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions (Phlegrean Fields, Italy). Bulletin of Volcanology 70, 961–76.Google Scholar
Pappalardo, L., Civetta, L., D'Antonio, M., Deino, A., Di Vito, M. A., Orsi, G., Carandente, A., de Vita, S., Isaia, R. & Piochi, M. 1999. Chemical and Sr-isotopic evolution of the Phlegrean magmatic system before the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions. Journal of Volcanology and Geothermal Research 91, 141–66.Google Scholar
Pappalardo, L., Piochi, M., D'Antonio, M., Civetta, L. & Petrini, R. 2002. Evidence for multi-stage magmatic evolution during the past 60 kyr at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. Journal of Petrology 43, 1415–34.Google Scholar
Pasero, M., Kampf, A. R., Ferraris, C., Pekov, I. V., Rakovan, J. & White, T. J. 2010. Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22, 163–79.Google Scholar
Perrotta, A., Scarpati, C., Luongo, G. & Morra, V. 2006. The Campi Flegrei caldera boundary in the city of Naples. In Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. (ed. De Vivo, B.), pp. 8596. Developments in Volcanology no. 9. Amsterdam: Elsevier.Google Scholar
Poli, S., Chiesa, S., Gillot, P. Y., Gregnanin, A. & Guichard, F. 1987. Chemistry versus time in the volcanic complex of Ischia (Gulf of Naples, Italy): evidence of successive magmatic cycles. Contributions to Mineralogy and Petrology 95, 322–35.Google Scholar
Ricci, G. 2000. Il distretto vulcanico dei Campi Flegrei: petrologia e geochimica dei depositi di breccia e dei depositi piroclastici associati. Ph.D. thesis, Università di Napoli, 95 pp. Published thesis.Google Scholar
Ridolfi, F., Renzulli, A., Macdonald, R. & Upton, B. G. J. 2006. Peralkaline syenite autoliths from Kilombe volcano, Kenya Rift Valley: evidence for subvolcanic interaction with carbonatitic fluids. Lithos 91, 373–92.CrossRefGoogle Scholar
Rittmann, A. 1948. Origine e differenziazione del magma ischitano. Schweizerische Mineralogische Petrographische Mitteilungen 28, 643–98.Google Scholar
Ronga, F., Lustrino, M., Marzoli, A. & Melluso, L. 2010. Petrogenesis of a basalt-comendite-pantellerite rock suite: the Boseti volcanic complex, Main Ethiopian Rift. Mineralogy and Petrology 98, 227–43.CrossRefGoogle Scholar
Rønsbo, J. G. 2008. Apatite in the Ilimaussaq alkaline complex: occurrence, zonation and compositional variation. Lithos 106, 7182.CrossRefGoogle Scholar
Rosi, M. & Sbrana, A. 1987. The Phlegrean Fields. C.N.R. Quaderni de “La ricerca scientifica” 114, vol. 10, 175 pp.Google Scholar
Scarpati, C., Cole, P. & Perrotta, A. 1993. The Neapolitan Yellow Tuff – a large volume multiphase eruption from Campi Flegrei, Southern Italy. Bulletin of Volcanology 55, 343–56.Google Scholar
Sharp, Z. D., Helffrich, G. R., Bohlen, S. R. & Essene, E. J. 1989. The stability of sodalite in the system NaAlSiO4-NaCl. Geochimica et Cosmochimica Acta 53, 1943–54.Google Scholar
Signorelli, S. & Carroll, M. R. 2002. Experimental study of Cl solubility in hydrous alkaline melts: constraints on the theoretical maximum amount of Cl in trachytic and phonolitic melts. Contributions to Mineralogy and Petrology 143, 209–18.Google Scholar
Sørensen, H. 1974. The Alkaline Rocks. London: John Wiley and Sons, 622 pp.Google Scholar
Stormer, J. C. & Nicholls, J. 1978. XLFrac: a program for interactive testing of magmatic differentiation models. Computers and Geosciences 4, 143–59.Google Scholar
Uchida, E, Kitamura, Y. & Imai, N. 1997. Mixing properties of Fe-Mn-Mg olivine solid solution determined experimentally by ion exchange method. Journal of Mineralogy, Petrology and Economic Geology 92, 142–53.CrossRefGoogle Scholar
Vilardo, G., Terranova, C., Bronzino, G., Giordano, S., Ventura, G., Alessio, G., Gabriele, M., Mainolfi, R., Pagliuca, E. & Veneruso, M. 2001. SISCam: Sistema Informativo Sismotettonico della Regione Campania. Laboratorio di Geomatica e Cartografia INGV-OV.Google Scholar
Villemant, B. 1988. Trace element evolution in the Phlegrean Fields (central Italy): fractional crystallization and selective enrichment. Contributions to Mineralogy and Petrology 98, 169–83.Google Scholar
White, J. C., Ren, M. & Parker, D. F. 2005. Variation in mineralogy, temperature and oxygen fugacity in a suite of strongly peralkaline lavas and tuffs, Pantelleria, Italy. The Canadian Mineralogist 43, 1331–47.Google Scholar
Supplementary material: File

Melluso Supplementary Table

Table S1: Representative analyses of clinopyroxene, aenigmatite, feldspars, feldspathoids, amphiboles, phlogopites, spinels, olivines and accessory phases in the Cuma, Punta Marmolite and Accademia lava domes.

Download Melluso Supplementary Table(File)
File 124.9 KB