Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T09:13:23.401Z Has data issue: false hasContentIssue false

Evidence for marine redox control on spatial colonization of early animals during Cambrian Age 3 (c. 521–514 Ma) in South China

Published online by Cambridge University Press:  29 December 2016

CHENGSHENG JIN
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
CHAO LI*
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
THOMAS J. ALGEO
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, USA
MENG CHENG
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
LIDAN LEI
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
ZIHU ZHANG
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
WEI SHI
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
*
Author for correspondence: [email protected]

Abstract

The early Cambrian Period was a key interval in Earth history with regard to changes in both ocean chemistry and animal evolution. Although increasing ocean ventilation has been widely assumed to have played a key role in the rapid appearance, diversification and spatial colonization of early animals, this relationship is in fact not firmly established. Here, we report a high-resolution Fe-C-S-Al-Ti geochemical study of the lower Cambrian Wangjiaping section from an outer-shelf setting of the Yangtze Sea of South China. Iron speciation data document a redox transition from dominantly euxinic to ferruginous conditions during Cambrian Age 3 (c. 521–514 Ma). Interpretation of coexisting pyrite sulphur isotope (δ34Spy) records from Wangjiaping reveals relatively high marine sulphate availability at Wangjiaping. Furthermore, Wangjiaping section shows lower δ34Spy (‒2.1±5.3‰) and lower TOC (2.4±1.1%) values but higher positive correlation (R2 = 0.66, p < 0.01) between TOC and Fepy/FeHR relative to deeper sections reported previously, suggesting that euxinia developed at Wangjiaping in response to increasing marine productivity and organic matter-sinking fluxes. Our reconstructed redox conditions and fossils at Wangjiaping in comparison with previously well-studied strata in the inner-shelf Xiaotan and Shatan sections suggest that planktonic and benthic planktonic trilobites with bioturbation appeared in the oxic water columns, whereas only planktonic trilobites without bioturbation occurred within the anoxic (even euxinic) water columns during Cambrian Age 3. This finding indicates that spatial heterogeneity of redox conditions in the shelves had an important effect on early animal distribution in the Yangtze Block.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T. J., Luo, G. M., Song, H. Y., Lyons, T. W. & Canfield, D. E. 2015. Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences 12 (7), 2131–51.CrossRefGoogle Scholar
Buatois, L. A., Mángano, M. G., Olea, R. A. & Wilson, M. A. 2016. Decoupled evolution of soft and hard substrate communities during the Cambrian Explosion and Great Ordovician Biodiversification Event. Proceedings of the National Academy of Sciences of the United States of America 113 (25), 6945–8.CrossRefGoogle ScholarPubMed
Butterfield, N. J. 2007. Macroevolution and macroecology through deep time. Palaeontology 50 (1), 4155.CrossRefGoogle Scholar
Butterfield, N. J. 2011. Animals and the invention of the Phanerozoic Earth system. Trends in Ecology & Evolution 26 (2), 81–7.CrossRefGoogle ScholarPubMed
Canfield, D. E., Farquhar, J. & Zerkle, A. L. 2010. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology 38 (5), 415–18.CrossRefGoogle Scholar
Canfield, D. E., Poulton, S. W., Knoll, A. H., Narbonne, G. M., Ross, G., Goldberg, T. & Strauss, H. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321 (5891), 949–52.Google Scholar
Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology 54 (1–2), 149–55.Google Scholar
Canfield, D. E. & Teske, A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382 (6587), 127–32.CrossRefGoogle ScholarPubMed
Chen, D., Zhou, X., Fu, Y., Wang, J. & Yan, D. 2015 a. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China. Terra Nova 27 (1), 6268.Google Scholar
Chen, P. 1984. Discovery of Lower Cambrian small shelly fossils from Jijiapo, Yichang, west Hubei and its significance. Professional Papers of Stratigraphy and Palaeontology 13, 4966 (in Chinese with English abstract).Google Scholar
Chen, X., Ling, H. F., Vance, D., Shields-Zhou, G. A., Zhu, M., Poulton, S. W., Och, L. M., Jiang, S. Y., Li, D., Cremonese, L. & Archer, C. 2015 b. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications 6, 7142.CrossRefGoogle ScholarPubMed
Clarkson, M., Poulton, S., Guilbaud, R. & Wood, R. 2014. Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments. Chemical Geology 382, 111–22.Google Scholar
Compston, W., Zhang, Z., Cooper, J. A., Ma, G. & Jenkins, R. J. F. 2008. Further SHRIMP geochronology on the early Cambrian of South China. American Journal of Science 308 (4), 399420.CrossRefGoogle Scholar
Crowe, S. A., Paris, G., Katsev, S., Jones, C., Kim, S. T., Zerkle, A. L., Nomosatryo, S., Fowle, D. A., Adkins, J. F., Sessions, A. L., Farquhar, J. & Canfield, D. E. 2014. Sulfate was a trace constituent of Archean seawater. Science 346 (6210), 735–9.CrossRefGoogle ScholarPubMed
Feng, L., Li, C., Huang, J., Chang, H. & Chu, X. 2014. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529–521 Ma) Yangtze platform, South China. Precambrian Research 246, 123–33.CrossRefGoogle Scholar
Gaines, R. R., Hammarlund, E. U., Hou, X. G., Qi, C. S., Gabbott, S. E., Zhao, Y. L., Peng, J. & Canfield, D. E. 2012. Mechanism for Burgess Shale-type preservation. Proceedings of the National Academy of Sciences of the United States of America 109 (14), 5180–4.Google Scholar
Gilleaudeau, G. J. & Kah, L. C. 2015. Heterogeneous redox conditions and a shallow chemocline in the Mesoproterozoic ocean: Evidence from carbon–sulfur–iron relationships. Precambrian Research 257, 94108.CrossRefGoogle Scholar
Goldberg, T., Poulton, S. W. & Strauss, H. 2005. Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: diagenetic constraints and seawater evolution. Precambrian Research 137 (3), 223–41.CrossRefGoogle Scholar
Goldberg, T., Strauss, H., Guo, Q. & Liu, C. 2007. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: evidence from biogenic sulphur and organic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 254 (1), 175–93.CrossRefGoogle Scholar
Gomes, M. L. & Hurtgen, M. T. 2013. Sulfur isotope systematics of a euxinic, low-sulfate lake: Evaluating the importance of the reservoir effect in modern and ancient oceans. Geology 41 (6), 663–6.CrossRefGoogle Scholar
Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. 2002. Calibration of sulfate levels in the Archean ocean. Science 298 (5602), 2372–4.CrossRefGoogle ScholarPubMed
Jiang, G., Wang, X., Shi, X., Xiao, S., Zhang, S. & Dong, J. 2012. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542–520 Ma) Yangtze platform. Earth and Planetary Science Letters 317–8, 96110.Google Scholar
Jin, C., Li, C., Algeo, T. J., Planavsky, N. J., Cui, H., Yang, X., Zhao, Y., Zhang, X. & Xie, S. 2016. A highly redox-heterogeneous ocean in South China during the early Cambrian (~529–514 Ma): Implications for biota-environment co-evolution. Earth and Planetary Science Letters 441, 3851.CrossRefGoogle Scholar
Jin, C., Li, C., Peng, X., Cui, H., Shi, W., Zhang, Z., Luo, G. & Xie, S. 2014. Spatiotemporal variability of ocean chemistry in the early Cambrian, South China. Science China Earth Sciences 57 (4), 579–91.CrossRefGoogle Scholar
Jones, D. S. & Fike, D. A. 2013. Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate–pyrite δ34S. Earth and Planetary Science Letters 363, 144–55.CrossRefGoogle Scholar
Kampschulte, A. & Strauss, H. 2004. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology 204 (3–4), 255–86.CrossRefGoogle Scholar
Knoll, A. H. & Carroll, S. B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science 284 (5423), 2129–37.Google Scholar
Landing, E., Geyer, G., Brasier, M. D. & Bowring, S. A. 2013. Cambrian Evolutionary Radiation: Context, correlation, and chronostratigraphy—Overcoming deficiencies of the first appearance datum (FAD) concept. Earth-Science Reviews 123, 133–72.Google Scholar
Leavitt, W. D., Halevy, I., Bradley, A. S. & Johnston, D. T. 2013. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proceedings of the National Academy of Sciences of the United States of America 110 (28), 11244–9.Google Scholar
Li, C., Cheng, M., Algeo, T. J. & Xie, S. 2015 a. A theoretical prediction of chemical zonation in early oceans (>520 Ma). Science China Earth Sciences 58 (11), 1901–09.Google Scholar
Li, C., Love, G. D., Lyons, T. W., Fike, D. A., Sessions, A. L. & Chu, X. 2010. A stratified redox model for the Ediacaran ocean. Science 328 (5974), 80–3.Google Scholar
Li, C., Love, G. D., Lyons, T. W., Scott, C. T., Feng, L., Huang, J., Chang, H., Zhang, Q. & Chu, X. 2012. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth and Planetary Science Letters 331, 246–56.CrossRefGoogle Scholar
Li, C., Planavsky, N. J., Shi, W., Zhang, Z., Zhou, C., Cheng, M., Tarhan, L. G., Luo, G. & Xie, S. 2015 b. Ediacaran marine redox heterogeneity and early animal ecosystems. Scientific Reports 5, article number: 17097, doi:10.1038/srep17097.Google ScholarPubMed
Li, C., Zhu, M. & Chu, X. 2016. Atmospheric and oceanic oxygenation and evolution of early life on Earth: New contributions from China. Journal of Earth Science 27 (2), 167–9.CrossRefGoogle Scholar
Lyons, T. W. & Severmann, S. 2006. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta 70 (23), 5698–722.CrossRefGoogle Scholar
Lyons, T. W., Werne, J. P., Hollander, D. J. & Murray, R. W. 2003. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chemical Geology 195 (1–4), 131–57.CrossRefGoogle Scholar
Nursall, J. 1959. Oxygen as a prerequisite to the origin of the Metazoa. Nature 183, 1170–72.CrossRefGoogle Scholar
Och, L. M., Cremonese, L., Shields-Zhou, G. A., Poulton, S. W., Struck, U., Ling, H., Li, D., Chen, X., Manning, C. & Thirlwall, M. 2016. Palaeoceanographic controls on spatial redox distribution over the Yangtze Platform during the Ediacaran-Cambrian transition. Sedimentology 63, 378410.CrossRefGoogle Scholar
Okada, Y., Sawaki, Y., Komiya, T., Hirata, T., Takahata, N., Sano, Y., Han, J. & Maruyama, S. 2014. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng'an and Chengjiang areas, South China. Gondwana Research 25 (3), 1027–44.Google Scholar
Peng, S., Babcock, L. & Cooper, R. 2012. The Cambrian Period . In The Geologic Time Scale, 1st edition (eds Gradstein, F. M., Ogg, J.G., Schmitz, M. & Ogg, G.), pp. 437–88. Amsterdam, Boston: Elsevier B.V. Google Scholar
Poulton, S. W. & Canfield, D. E. 2005. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology 214 (3), 209–21.CrossRefGoogle Scholar
Poulton, S. W. & Canfield, D. E. 2011. Ferruginous conditions: a dominant feature of the ocean through Earth's history. Elements 7 (2), 107–12.CrossRefGoogle Scholar
Raiswell, R. & Canfield, D. E. 1998. Sources of iron for pyrite formation in marine sediments. American Journal of Science 298 (3), 219–45.Google Scholar
Raiswell, R. & Canfield, D. E. 2012. The iron biogeochemical cycle past and present. Geochemical Perspectives 1 (1), 1220.Google Scholar
Scott, C., Wing, B. A., Bekker, A., Planavsky, N. J., Medvedev, P., Bates, S. M., Yun, M. & Lyons, T. W. 2014. Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir. Earth and Planetary Science Letters 389, 95104.CrossRefGoogle Scholar
Shields-Zhou, G. & Zhu, M. 2013. Biogeochemical changes across the Ediacaran–Cambrian transition in South China. Precambrian Research 225, 16.CrossRefGoogle Scholar
Shu, D., Isozaki, Y., Zhang, X., Han, J. & Maruyama, S. 2014. Birth and early evolution of metazoans. Gondwana Research 25 (3), 884–95.CrossRefGoogle Scholar
Sim, M. S., Bosak, T. & Ono, S. 2011. Large sulfur isotope fractionation does not require disproportionation. Science 333 (6038), 74–7.CrossRefGoogle Scholar
Sperling, E. A., Frieder, C. A., Raman, A. V., Girguis, P. R., Levin, L. A. & Knoll, A. H. 2013. Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences of the United States of America 110 (33), 13446–51.CrossRefGoogle ScholarPubMed
Sperling, E. A., Wolock, C. J., Morgan, A. S., Gill, B. C., Kunzmann, M., Halverson, G. P., Macdonald, F. A., Knoll, A. H. & Johnston, D. T. 2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523 (7561), 451–4.CrossRefGoogle Scholar
Steiner, M., Li, G., Qian, Y., Zhu, M. & Erdtmann, B.-D. 2007. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology 254 (1–2), 6799.CrossRefGoogle Scholar
Sturdivant, S. K., Diaz, R. J. & Cutter, G. R. 2012. Bioturbation in a declining oxygen environment, in situ observations from Wormcam. Plos One 7 (4), doi: 10.1371/journal.pone.0034539.Google Scholar
Tarhan, L. G., Droser, M. L., Planavsky, N. J. & Johnston, D. T. 2015. Protracted development of bioturbation through the early Palaeozoic Era. Nature Geoscience 8, 865–9.CrossRefGoogle Scholar
Wang, J. & Li, Z.-X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research 122, 141–58.CrossRefGoogle Scholar
Wang, W., Guan, C., Zhou, C., Wan, B., Tang, Q., Chen, X., Chen, Z. & Yuan, X. 2014. Exceptional preservation of macrofossils from the Ediacaran Lantian and Miaohe Biotas, South China. Palaios 29 (3), 129–36.CrossRefGoogle Scholar
Wang, X., Shi, X., Jiang, G. & Zhang, W. 2012. New U–Pb age from the basal Niutitang Formation in South China: Implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran–Cambrian transition. Journal of Asian Earth Sciences 48, 18.CrossRefGoogle Scholar
Wille, M., Nagler, T. F., Lehmann, B., Schroder, S. & Kramers, J. D. 2008. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature 453 (7196), 767–9.CrossRefGoogle Scholar
Xiang, W. L., Zhou, T. M., Ni, S. Z., Zeng, Q. L., Xu, G. H., Lai, C. G., Wang, X. F. & Li, Z. H. 1987. Cambrian System . In Biostratigraphy of the Yangtze Gorge area (2): Early Palaeozoic Era (eds Wang, X. F., Xiang, W. L., Ni, S. Z., Zeng, Q. L., Xu, G. H., Zhou, T. M., Lai, C. G. & Li, Z. H.), pp. 442. Beijing: Geological Publishing House.Google Scholar
Yang, A., Zhu, M. & Zhang, J. 2005. Stratigraphic distribution and palaeogeographic control on the Early Cambrian eodiscoids in Yangtze Platform. Journal of Palaeogeography 7, 219232 (in Chinese with English abstract).Google Scholar
Yang, A., Zhu, M., Zhang, J. & Li, G. 2003. Early Cambrian eodiscoid trilobites of the Yangtze Platform and their stratigraphic implications. Progress in Natural Science 13 (11), 861–66.CrossRefGoogle Scholar
Yang, B., Steiner, M. & Keupp, H. 2015. Early Cambrian palaeobiogeography of the Zhenba–Fangxian Block (South China): Independent terrane or part of the Yangtze Platform? Gondwana Research 28 (4), 1543–65.CrossRefGoogle Scholar
Yuan, J. L. & Zhao, Y. L. 1999. Subdivision and correlation of Lower Cambrian in southwest China, with a discussion of the age of Early Cambrian series biota. Acta Palaeontologica Sinica 38 (Suppl.), 116–31 (in Chinese with English abstract).Google Scholar
Zhang, S., Li, H., Jiang, G., Evans, D. A. D., Dong, J., Wu, H., Yang, T., Liu, P. & Xiao, Q. 2015. New paleomagnetic results from the Ediacaran Doushantuo Formation in South China and their paleogeographic implications. Precambrian Research 259, 130–42.CrossRefGoogle Scholar
Zhu, M. 2010. The origin and Cambrian explosion of animals: fossil evidence from China. Acta Palaeontologica Sinica 49, 269–87 (in Chinese with English abstract).Google Scholar
Zhu, M., Zhang, J. & Yang, A. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 254 (1–2), 761.Google Scholar
Zhu, M., Zhang, J., Yang, A., Li, G., Steiner, M. & Erdtmann, B. D. 2003. Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: an integrated approach. Progress in Natural Science 13 (12), 951–60.Google Scholar