Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T18:22:26.522Z Has data issue: false hasContentIssue false

The Euphrates volcanic field, northeastern Syria: petrogenesis of Cenozoic basanites and alkali basalts

Published online by Cambridge University Press:  29 April 2008

NANCY A. LEASE
Affiliation:
Ministère de l'Agriculture, des Pêcheries et de l'Alimentation, 200 chemin Sainte-Foy, Québec (Québec), G1R 4X6, Canada, and Department of Geology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
ABDEL-FATTAH M. ABDEL-RAHMAN*
Affiliation:
Ministère de l'Agriculture, des Pêcheries et de l'Alimentation, 200 chemin Sainte-Foy, Québec (Québec), G1R 4X6, Canada, and Department of Geology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
*
*Author for correspondence: [email protected]

Abstract

The Plio-Quaternary Euphrates volcanic field of NE Syria includes large discontinuous exposures of basanitic and basaltic lava flows (1200 km2 in area). It represents the northern segment of the Cenozoic volcanic province of the Middle East and is located near the Bitlis collision suture. The rocks consist of olivine (15–20%), clinopyroxene (30–35%), plagioclase (45–55%) and opaque phases. Chemically, the rocks are largely ultrabasic (SiO2 38.2–45.5 wt%, MgO 8.7–13.0 wt% and average Mg number of 0.65). They are enriched in incompatible trace elements such as Zr (133–276 ppm), Nb (25–71 ppm) and Y (17–28 ppm). The REE patterns are strongly fractionated ((La/Yb)N = 19.6), indicative of a garnet-bearing source. The 143Nd/144Nd isotopic compositions range from 0.512868 to 0.512940 (εNd = 4.5 to 5.9), and 87Sr/86Sr from 0.70309 to 0.70352. These chemical and isotopic compositions reflect strong affinities to OIB. Elemental ratios such as K/P (3.4), La/Ta (13) and La/Nb (0.77), and the low SiO2 values, suggest that the Euphrates magma was subjected to minimal crustal contamination. Petrogenetic modelling has been carried out using a variety of mantle source materials, different degrees of partial melting (0.1 to 10%), and a number of scenarios including metasomatized sources. Modelling suggests that the magma could have been produced as a result of a small degree of partial melting of either (1) a garnet-bearing depleted source enriched with a small addition of metasomatizing fluids, or (2) a garnet-bearing fertile source. The overall chemical and petrological characteristics are more consistent with the generation of the Euphrates magma by a small degree of partial melting (F = 1%) of a primitive, garnet-lherzolite mantle source, possibly containing a minor spinel component. The Neogene collision of the Arabian plate with Eurasia along the Bitlis suture resulted in reactivation (beneath the Euphrates basin) of deep-seated fractures, along which lavas may have penetrated the crust.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Rahman, A. M. 2002. Mesozoic volcanism in the Middle East: geochemical, isotopic and petrogenetic evolution of extension-related alkali basalts from central Lebanon. Geological Magazine 139, 621–40.CrossRefGoogle Scholar
Abdel-Rahman, A. M. & Kumarapeli, P. S. 1999. Geochemistry and petrogenesis of the Tibbit Hill metavolcanic suite of the Appalachian Fold Belt, Quebec–Vermont: a plume-related and fractionated assemblage. American Journal of Science 299, 210–37.CrossRefGoogle Scholar
Abdel-Rahman, A. M. & Nassar, P. E. 2004. Cenozoic volcanism in the Middle East: petrogenesis of alkali basalts from northern Lebanon. Geological Magazine 141, 545–63.CrossRefGoogle Scholar
Allègre, C. J., Hamelin, B., Provost, A. & Dupré, B. 1987. Topology in isotopic multispace and origin of mantle chemical heterogeneities. Earth and Planetary Science Letters 81, 319–37.CrossRefGoogle Scholar
Allègre, C. J. & Minster, J. F. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters 38, 125.CrossRefGoogle Scholar
Baker, J. A., Chazot, G., Menzies, M. A. & Thirlwall, M. F. 1998. Metasomatism of the shallow mantle beneath Yemen by the Afar plume – Implications for mantle plumes, flood volcanism, and intraplate volcanism. Geology 26, 431–4.2.3.CO;2>CrossRefGoogle Scholar
Baker, J. A., Menzies, M. A., Thirlwall, M. F. & Macpherson, C. J. 1997. Petrogenesis of Quaternary intraplate volcanism, Sana'a, Yemen: implications for plume–lithosphere interaction and polybaric melt hybridization. Journal of Petrology 38, 1359–90.CrossRefGoogle Scholar
Baker, J. A., Thirlwall, M. F. & Menzies, M. A. 1996. Sr–Nd–Pb isotopic and trace element evidence for crustal contamination of plume-derived flood basalts: Oligocene flood volcanism in western Yemen. Geochimica et Cosmochimica Acta 60, 2559–81.CrossRefGoogle Scholar
Baldridge, W. S., Eyal, Y., Bartov, Y., Steinitz, G. & Eyal, M. 1991. Miocene magmatism of Sinai related to the opening of the Red Sea. Tectonophysics 197, 181201.CrossRefGoogle Scholar
Barberi, F., Ferrara, G., Santacroce, R., Treuil, M. & Varet, J. 1975. A transitional basalt–pantellerite sequence of fractional crystallization: The Boina center (Afar rift, Ethiopia). Journal of Petrology 16, 2256.CrossRefGoogle Scholar
Barrat, J. A., Fourcade, S., Jahn, B. M., Cheminèe, J. L. & Capdevila, R. 1998. Isotope (Sr, Nd, Pb, O) and trace element geochemistry of volcanics from the Erta' Ale range (Ethiopia). Journal of Volcanology and Geothermal Research 80, 85100.CrossRefGoogle Scholar
Bertrand, H., Chazot, G., Blichert-Toft, J. & Thoral, S. 2003. Implications of widespread high-m volcanism on the Arabian Plate for Afar mantle plume and litho-sphere composition. Chemical Geology 198, 4761.CrossRefGoogle Scholar
Bradshaw, T. K. & Smith, E. I. 1994. Polygenetic Quaternary volcanism at Crater Flat, Nevada. Journal of Volcanology and Geothermal Research 63, 165–82.CrossRefGoogle Scholar
Brew, G. E., Barazangi, M., Al-Maleh, A. K. & Sawaf, T. 2001. Tectonic and geologic evolution of Syria. GeoArabia 6, 573615.CrossRefGoogle Scholar
Brew, G. E., Litak, R. K., Seber, D., Barazangi, M., Al-Iman, A. & Sawaf, T. 1997. Basement depth and sedimentary velocity structure in the northern Arabian platform, eastern Syria. Geophysical Journal International 128, 617–31.CrossRefGoogle Scholar
Camp, V. E. & Roobol, M. J. 1989. The Arabian continental alkali basalt province: Part I. Evolution of Harrat Rahat, Kingdom of Saudia Arabia. Geological Society of America Bulletin 101, 7195.2.3.CO;2>CrossRefGoogle Scholar
Camp, V. E. & Roobol, M. J. 1992. Upwelling asthenosphere beneath western Arabia and its regional implications. Journal of Geophysical Research 97B, 15255–71.CrossRefGoogle Scholar
Camp, V. E., Roobol, M. J. & Hooper, P. R. 1992. The Arabian continental alkali basalt province: Part III. Evolution of Harrat Kishb, Kingdom of Saudia Arabia. Geological Society of America Bulletin 104, 379–96.2.3.CO;2>CrossRefGoogle Scholar
Chaffey, D. J., Cliff, R. A. & Wilson, B. M. 1989. Characterization of the St Helena magma sourse. In Magmatism in the ocean basins (eds Saunders, A. D. & Norry, M. J.), pp. 257–76. Geological Society of London, Special Publication no. 42.Google Scholar
Chen, W. & Arculus, R. J. 1995. Geochemical and isotopic characteristics of lower crustal xenoliths, San Francisco Volcanic Field, Arizona, U.S.A. Lithos 36, 203–25.CrossRefGoogle Scholar
Dubertret, L. 1955. Carte Geologique du, Liban aux 1/200,000, avec notice explicative. Beyrouth: Ministire des Travaux Public, 74 pp.Google Scholar
Ebinger, C. J. & Sleep, N. H. 1998. Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature 395, 788–91.CrossRefGoogle Scholar
Ellam, R. M. 1992. Lithospheric thickness as a control on basalt geochemistry. Geology 20, 153–6.2.3.CO;2>CrossRefGoogle Scholar
Fitton, J. G., James, D. & Leeman, W. P. 1991. Basic magmatism associated with Late Cenozoic extension in the western United States: compositional variations in space and time. Journal of Geophysical Research 96, 13693–712.CrossRefGoogle Scholar
Frey, F. A., Clague, D., Mahoney, J. J. & Sinton, J. M. 2000. Volcanism at the edge of the Hawaiian plume: petrogenesis of submarine alkalic lavas from the North Arch Volcanic Field. Journal of Petrology 41, 667–91.CrossRefGoogle Scholar
Frey, F. A., Garcia, M. O., Wise, W. S., Kennedy, A., Gurriet, P. & Albarede, F. 1991. The evolution of Mauna Kea volcano, Hawaii: Petrogenesis of tholeiitic and alkali basalts. Journal of Geophysical Research 96, 14347–75.CrossRefGoogle Scholar
Furman, T., Bryce, J. G., Karson, J. & Iotti, A. 2004. East African Rift System (EARS) plume structure: insights from Quaternary mafic lavas of Turkana, Kenya. Journal of Petrology 45, 1069–88.CrossRefGoogle Scholar
Furman, T., Kaleta, K. M., Bryce, J. G. & Hanan, B. B. 2006. Tertiary mafic lavas of Turkana, Kenya: constraints on East African plume structure and the occurrence of high–μ volcanism in Africa. Journal of Petrology 47, 1221–44.CrossRefGoogle Scholar
Garfunkel, Z. 1989. Tectonic Setting of Phanerozoic magmatism in Israel. Israel Journal of Earth Sciences 38, 5174.Google Scholar
George, R. & Rogers, N. 2002. Plume dynamics beneath the African plate inferred from the geochemistry of the Tertiary basalts of southern Ethiopia. Contributions to Mineralogy and Petrology 144, 286304.CrossRefGoogle Scholar
Giannérini, G., Campredon, R., Féraud, G. & Abou Zakhem, B. 1988. Déformations introplaques et volcanisme associé: exemple de la bordure NW de la plaque Arabique au Cénozoïque. Bulletin de la Société Géologique de France 8 (6), 937–47.CrossRefGoogle Scholar
Gibb, F. G. F. & Henderson, C. M. B. 2006. Chemistry of the Shiant Isles main sill, NW Scotland, and wider implications for the petrogenesis of mafic sills. Journal of Petrology 47, 191230.CrossRefGoogle Scholar
Gibson, S. A., Thompson, R. N., Dickin, A. P. & Leonardos, O. H. 1995. High-Ti and low-Ti mafic potassic magmas: key to plume–lithosphere interactions and continental flood-basalt genesis. Earth and Planetary Science Letters 136, 149–65.CrossRefGoogle Scholar
Gibson, S. A., Thompson, R. N., Weska, R. K., Dickin, A. P. & Leonardos, O. H. 1997. Late Cretaceous rift-related upwelling and melting of the Trinidade starting mantle plume head beneath western Brazil. Contributions to Mineralogy and Petrology 126, 303–14.CrossRefGoogle Scholar
Hanson, G. N. 1980. Rare earth elements in petrogenetic studies of igneous systems. Annual Reviews in Earth Sciences 8, 371406.CrossRefGoogle Scholar
Hart, S. R. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth and Planetary Science Letters 90, 273–96.CrossRefGoogle Scholar
Hart, W. K., Wolde, G. C., Walter, R. C. & Mertzman, S. A. 1989. Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions. Journal of Geophysical Research 94, 7731–48.CrossRefGoogle Scholar
Hofmann, A. W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–29.CrossRefGoogle Scholar
Lassiter, J. C., DePaolo, D. J. & Mahoney, J. J. 1995. Geochemistry of the Wrangellia Flood Basalt Province: implications for the role of continental and oceanic lithosphere in flood basalt genesis. Journal of Petrology 36, 9831009.CrossRefGoogle Scholar
Laws, E. D. & Wilson, M. 1997. Tectonics and magmatism associated with Mesozoic passive continental margin development in the Middle East. Journal of the Geological Society, London 154, 757–60.CrossRefGoogle Scholar
Le Bas, M. J. & Streckeisen, A. L. 1991. The IUGS systematics of igneous rocks. Journal of the Geological Society of London 148, 825–33.CrossRefGoogle Scholar
Litak, R. K., Barazangi, M., Beauchamp, W., Seber, D., Brew, G., Sawaf, T. & Al-Youssef, W. 1997. Mesozoic–Cenozoic evolution of the intraplate Euphrates fault system, Syria: implications for regional tectonics. Journal of the Geological Society of London 154, 653–66.CrossRefGoogle Scholar
Lustrino, M. & Sharkov, E. 2006. Neogene volcanic activity of western Syria and its relationship with Arabian plate kinematics. Journal of Geodynamics 42, 140–58.CrossRefGoogle Scholar
Lyberis, N., Yurur, T., Chorowicz, J., Kasapoglu, E. & Gundogdu, N. 1992. The East Anatolian Fault: an oblique collisional belt. In The Afro-Arabian Rift System (ed. R. Altherr), pp. 1–15. Tectonophysics 204.Google Scholar
McKenzie, D. P. & O'Nions, R. K. 1991. Partial melting distributions from inversion of rare earth element concentrations. Journal of Petrology 32, 1021–91.CrossRefGoogle Scholar
Melluso, L., Beccaluva, L., Brotzu, P., Gregnanin, A., Gupta, A. K., Morbidelli, L. & Traversa, G. 1995. Constraints on the mantle sources of the Deccan Traps from the petrology and geochemistry of the basalts of Gujarat State (Western India). Journal of Petrology 36, 13931432.CrossRefGoogle Scholar
Menzies, M. A. & Kyle, R. 1990. Continental volcanism: a crust–mantle probe. In Continental Mantle (ed. Menzies, M. A.), pp. 157–77. Oxford: Oxford Science Publishers.Google Scholar
Mohr, P. 1983. Ethiopian flood basalt province. Nature 303, 577–84.CrossRefGoogle Scholar
Mouty, M., Delaloye, M., Fontignie, D., Piskin, O. & Wagner, J.-J. 1992. The volcanic activity in Syria and Lebanon between Jurassic and actual. Schweizerische Mineralogische und Petrografische Mitteilungen 72, 91105.Google Scholar
Notsu, K., Fujitani, T., Ui, T., Matsuda, J. & Ercan, T. 1995. Geochemical features of collision-related volcanic rocks in central and eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research 64, 171–92.CrossRefGoogle Scholar
Pearce, J. A. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental basalts and mantle xenoliths (eds Hawkesworth, C. J. & Norry, M. J.), pp. 230–49. Cheshire, U.K.: Shiva.Google Scholar
Pearce, J. A., Bender, J. F., De Long, S. E., Kidd, W. S. F., Low, P. J., Güner, Y., Saroğlu, F., Yilmaz, Y., Moorbath, S. & Mitchell, J. G. 1990. Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research 44, 189229.CrossRefGoogle Scholar
Pik, R., Deniel, C., Coulon, C., Yirgu, G. & Marty, B. 1999. Isotopic and trace element signatures of Ethiopian flood basalts; evidence for plume–lithosphere interactions. Geochimica et Cosmochimica Acta 63, 2263–79.CrossRefGoogle Scholar
Ponikarov, V. P. (editor-in-chief) 1967. The Geology of Syria: Explanatory Notes on the Geological Map of Syria, Scale 1:5 000 000, Part I, Stratigraphy, Igneous Rocks and Tectonics. Damascus, Syria: Ministry of Industry, 88 pp.Google Scholar
Richard, P., Shimizu, N. & Allègre, C. J. 1976. 143Nd/144Nd, a natural tracer: an application to oceanic basalts. Earth and Planetary Science Letters 31, 269–78.CrossRefGoogle Scholar
Sawaf, T., Al-Saad, D., Gebran, A., Barazangi, M., Best, J. A. & Chaimov, T. 1993. Stratigraphy and structure of eastern Syria across the Euphrates depression. Tectonophysics 220, 267–81.CrossRefGoogle Scholar
Shaw, D. M. 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta 34, 237–43.CrossRefGoogle Scholar
Shaw, J. E., Baker, J. A., Menzies, M. A., Thirlwall, M. F. & Ibrahim, K. M. 2003. Petrogenesis of the largest intraplate volcanic field on the Arabian Plate (Jordan): a mixed lithosphere–asthenosphere source activated by lithospheric extension. Journal of Petrology 44, 1657–79.CrossRefGoogle Scholar
Smith, E. I., Sánchez, A., Walker, J. D. & Wang, K. 1999. Geochemistry of mafic magmas in the Hurricane Volcanic Field, Utah: implications for small- and large-scale chemical variability of the lithospheric mantle. Journal of Geology 107, 433–48.CrossRefGoogle Scholar
Spera, F. J. 1987. Dynamics of translithospheric migration of metasomatic fluid and alkaline magma. In Mantle metasomatism (eds Menzies, M. A. & Hawkesworth, C. J.), pp. 1120. London: Academic Press.Google Scholar
Staudigel, H., Zindler, A., Hart, S. R., Leslie, C. Y. & Clague, D. 1984. The isotope systematics of a juvenile intra-plate volcano: Pb, Nd and Sr isotope ratios of basalts from Loihi Seamount, Hawaii. Earth and Planetary Science Letters 69, 1329.CrossRefGoogle Scholar
Stewart, K. & Rogers, N. 1996. Mantle plume and lithosphere contributions to basalts from southern Ethiopia. Earth and Planetary Science Letters 139, 195211.CrossRefGoogle Scholar
Sun, S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the ocean basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Volker, F., Altherr, R., Jochum, K.-P. & McCulloch, M. T. 1997. Quaternary volcanic activity of the southern Red Sea: new data and assessment of models on magma sources and Afar plume-lithosphere interaction. Tectonophysics 278, 1529.CrossRefGoogle Scholar
Weaver, B. L. 1991. Trace element evidence for the origin of ocean-island basalts. Geology 19, 123–6.2.3.CO;2>CrossRefGoogle Scholar
Weinstein, Y., Navon, O., Altherr, R. & Stein, M. 2006. The role of lithospheric mantle heterogeneity in the generation of Plio-Pleistocene alkali basaltic suites from Harrat Ash Shaam (Israel). Journal of Petrology 47, 1017–50.CrossRefGoogle Scholar
White, W. M. 1985. Sources of oceanic basalts: radiogenic isotopic evidence. Geology 13, 115–18.2.0.CO;2>CrossRefGoogle Scholar
White, R. S. & McKenzie, D. P. 1989. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research 94, 7685–730.CrossRefGoogle Scholar
Wilson, M. 1993. Geochemical signatures of oceanic and continental basalts: a key to mantle dynamics? Journal of the Geological Society, London 150, 977–90.CrossRefGoogle Scholar
Witt-Eickschen, G. & Kramm, U. 1997. Mantle upwelling and metasomatism beneath central Europe: geochemical and isotopic constraints from mantle xenoliths from the Rhon (Germany). Journal of Petrology 38, 479–93.CrossRefGoogle Scholar