Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T05:31:20.704Z Has data issue: false hasContentIssue false

Ecdysozoan-like sclerites among Ediacaran microfossils

Published online by Cambridge University Press:  05 August 2015

MAŁGORZATA MOCZYDŁOWSKA*
Affiliation:
Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE-75236 Uppsala, Sweden
GRAHAM E. BUDD
Affiliation:
Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE-75236 Uppsala, Sweden
HEDA AGIĆ
Affiliation:
Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE-75236 Uppsala, Sweden
*
*Author for correspondence: [email protected]

Abstract

We report the occurrence of organically preserved microfossils from the subsurface Ediacaran strata overlying the East European Platform in Poland, in the form of sclerites and cuticle fragments of larger organisms. They are morphologically similar to those known from Cambrian strata and associated with various metazoan fossils of recognized phyla. The Ediacaran age of the microfossils is evident from the stratigraphic position below the base of the Cambrian System and above the isotopically dated tuff layers at c. 551±4Ma. Within this strata interval, other characteristic Ediacaran microorganisms co-occur such as cyanobacteria, vendotaenids, microalgae, Ceratophyton, Valkyria and macroscopic annelidan Sabellidites. The recent contributions of organic sclerites in revealing the scope of the Cambrian explosion are therefore also potentially extendable back to the Ediacaran Period when animals first appear in the fossil record.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aseeva, E. A. 1988. Microfossils in Upper Precambrian. In Biostratigraphy and Paleogeographic Reconstructions of the Precambrian of Ukraine, pp. 93102. Naukova Dumka, Kiev, Ukraine (in Russian).Google Scholar
Butterfield, N. J. 2008. An early Cambrian radula. Journal of Paleontology 82, 543–54.CrossRefGoogle Scholar
Butterfield, N. J. & Harvey, T. H. P. 2012. Small carbonaceous fossils (SCF): a new measure of early Paleozoic paleobiology. Geology 40, 71–4.CrossRefGoogle Scholar
Butterfield, N. J., Knoll, A. H. & Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils & Strata 34, 184.CrossRefGoogle Scholar
Caron, J-B., Smith, M. R. & Harvey, T. H. P. 2013. Beyond the Burgess Shale: Cambrian microfossils track the rise and fall of hallucigeniid lobopodians. Proceedings of The Royal Society B 280 (1767), doi: 10.1098/rspb.2013.161.Google ScholarPubMed
Chen, Z., Bengtson, S., Zhou, C-M., Hua, H. & Yue, Z. 2008. Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, China. Lethaia 41, 3745.CrossRefGoogle Scholar
Compston, W., Sambridge, M. S., Reinfrank, R. F., Moczydłowska, M., Vidal, G. & Claesson, S. 1995. Numerical ages of volcanic rocks and the earliest faunal zone within the Late Precambrian of east Poland. Journal of the Geological Society, London 152, 599611.CrossRefGoogle Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D. & Peterson, K. J. 2011. The Cambrian conundrum: Early divergence and late ecological success in the early history of animals. Science 334, 1091–7.CrossRefGoogle Scholar
Grant, S. W. F. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science 290-A, 261–94.Google ScholarPubMed
Grotzinger, J. P., Watters, W. A. & Knoll, A. H. 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26, 334–59.2.0.CO;2>CrossRefGoogle Scholar
Harvey, T. H. P. & Butterfield, N. J. 2008. Sophisticated particle-feeding in a large Early Cambrian crustacean. Nature 452, 868–71.CrossRefGoogle Scholar
Harvey, T. H. P., Ortega-Hernández, J., Lin, J.-P., Zhao, Y. & Butterfield, N. J. 2012. Burgess Shale-type microfossils from the middle Cambrian Kaili Formation, Guizhou Province, China. Acta Palaeontological Polonica 57, 423–36.CrossRefGoogle Scholar
Jensen, S. 2003. The Proterozoic and earliest Cambrian trace fossils record: Patterns, problems and perspectives. Integrative and Comparative Biology 43, 219–28.CrossRefGoogle ScholarPubMed
Moczydłowska, M. 1991. Acritarch biostratigraphy of the Lower Cambrian and Precambrian–Cambrian boundary in southeastern Pland. Fossila and Strata 29, 1127.CrossRefGoogle Scholar
Moczydłowska, M. 2008. New records of late Ediacaran microbiota from Poland. Precambrian Research 167, 7192.CrossRefGoogle Scholar
Moczydłowska, M., Westall, F. & Foucher, F. 2014. Microstructure and biogeochemistry of the organically preserved Ediacaran metazoan Sabellidites . Journal of Paleontology 88, 224–39.CrossRefGoogle Scholar
Pacześna, J. 1986. Upper Vendian and Lower Cambrian ichnocoenoses of Lublin region. Biuletyn Instytutu Geologicznego 355, 3147.Google Scholar
Pacześna, J. 2014. Lithostratigraphy of the Ediacaran deposits in the Lublin-Podlasie sedimentary basin (eastern and south-eastern Poland). Biuletyn Panstwowego Instytutu Geologicznego 460, 124.Google Scholar
Runnegar, B. N. & Fedonkin, M. A. 1992. Proterozoic Metazoan Body Fossils. In The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.), pp. 369–88. Cambridge, UK: Cambridge University Press.Google Scholar
Schopf, J. W. 1992. Atlas of representative Proterozoic microfossils. In The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.), pp. 1055–117. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Smith, M. R., Harvey, T. H. P. & Butterfield, N. J. (2015). The macro- and microfossil record of the Cambrian priapulid Ottoia . Palaeontology, published online 6 May 2015, doi: 10.1111/pala.12168, 117.Google Scholar
Smith, M. R. & Ortega-Hernández, J. 2014. Hallucigenia's onychophoran-like clawes and the case for Tactopoda. Nature 514, 363–6.CrossRefGoogle ScholarPubMed
Sokolov, B. S. 1977. Organic World of the Earth on Its Way to the Phanerozoic Differentiation. Nauk, USSR: Vestrik Akademii (in Russian).Google Scholar
Sokolov, B. S. 1990. Vendian polychaeta. In The Vendian System. Vol. 1 Paleontology (eds Sokolov, B. S. & Iwanowski, A. B.), pp. 244–46. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Volkova, N. A., Kirjanov, V. V., Piscun, L. V., Pashkavichene, L. T. & Jankauskas, T. V. 1979. Plant microfossils. In Upper Precambrian and Cambrian Paleontology of East Europena Platform (eds Keller, B. M. & Rozanov, A. Yu.), pp. 438. Moscow, Nauka (in Russian).Google Scholar