Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T17:25:19.224Z Has data issue: false hasContentIssue false

Earth's oldest jellyfish strandings: a unique taphonomic window or just another day at the beach?

Published online by Cambridge University Press:  13 June 2016

AARON D. SAPPENFIELD*
Affiliation:
Department of Earth Sciences, University of California, Riverside, 900 University Ave., Riverside, California 92521, USA
LIDYA G. TARHAN
Affiliation:
Department of Earth Sciences, University of California, Riverside, 900 University Ave., Riverside, California 92521, USA Department of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven, Connecticut 06511, USA
MARY L. DROSER
Affiliation:
Department of Earth Sciences, University of California, Riverside, 900 University Ave., Riverside, California 92521, USA
*
Author for correspondence: [email protected]

Abstract

Discoidal macrofossils reported herein from the lower Cambrian Zabriskie Quartzite (Great Basin, western United States) record the oldest Phanerozoic medusozoan body fossils, as well as the oldest medusozoan stranding event on record. Moreover, these fossils provide evidence of a significant shift in the taphonomic mode characteristic of preservation of nonmineralized taxa in coarse-grained siliciclastic successions near the onset of the Phanerozoic. Taphonomic and sedimentological evidence recorded by these and younger examples of stranded Cambrian medusae is consistent in suggesting that several of the requirements for preservation of these fossils were holdovers from the Ediacaran Period, including the presence of microbial mats and a lack of carcass disturbance by scavenging and/or bioturbating taxa. To shed further light upon the taphonomic factors necessary for the preservation of Cambrian medusae, we compared the biostratinomy and sedimentology of Cambrian medusa strandings to those of Ediacara Biota assemblages from lithologically similar successions. We find key secular disparities in the taphonomic histories of these two types of fossil assemblage. Inconsistencies between the preservational styles characteristic of fossil assemblages preserved in sandstone lithofacies on each side of the Precambrian–Cambrian boundary are explained by a considerable change in the preferred depositional setting in which these macrofossil assemblages are preserved. Thus, rather than documenting a single taphonomic continuum through the Precambrian–Cambrian transition, the Zabriskie and younger medusozoan body fossil assemblages record the advent of an entirely new, yet still very rarely exploited, taphonomic window exclusive to the Cambrian Period.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, D. J. 2011. What's on the mind of a jellyfish? A review of behavioural observations on Aurelia sp. jellyfish. Neuroscience & Biobehavioral Reviews 35, 474–82.CrossRefGoogle ScholarPubMed
Barnes, J. & Klein, G. 1975. Tidal deposits in the Zabriskie Quartzite (Cambrian), Eastern California and Western Nevada. In Tidal Deposits (ed. Ginsburg, R.), pp. 163–9. Berlin: Springer.CrossRefGoogle Scholar
Bottjer, D. J., Hagadorn, J. W. & Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today 10, 17.Google Scholar
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth & Planetary Sciences 31, 275301.CrossRefGoogle Scholar
Bruton, D. L. 1991. Beach and laboratory experiments with the jellyfish Aurelia and remarks on some fossil ‘medusoid’ traces. In The Early Evolution of Metazoa and the Significance of Problematic Taxa (eds Simonetta, A. M. & Morris, S. C.), pp. 125–9. Cambridge: Cambridge University Press.Google Scholar
Buatois, L. A., Narbonne, G. M., Mángano, M. G., Carmona, N. B. & Myrow, P. 2014. Ediacaran matground ecology persisted into the earliest Cambrian. Nature Communications 5, 3544.CrossRefGoogle ScholarPubMed
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian explosion. Integrative and Comparative Biology 43 (1), 166–77.CrossRefGoogle ScholarPubMed
Callow, R. H. T. & Brasier, M. D. 2009. Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: implications for Ediacaran taphonomic models. Earth-Science Reviews 96, 207–19.CrossRefGoogle Scholar
Cartwright, P., Halgedahl, S. L., Hendricks, J. R., Jarrard, R. D., Marques, A. C., Collins, A. G. & Lieberman, B. S. 2007. Exceptionally preserved jellyfishes from the Middle Cambrian. PLoS ONE 2 (10), e1121.CrossRefGoogle ScholarPubMed
Collins, A. G. 2002. Phylogeny of Medusozoa and the evolution of cnidarian life cycles. Journal of Evolutionary Biology 15, 418–32.CrossRefGoogle Scholar
Collins, A. G., Schuchert, P., Marques, A. C., Jankowski, T., Medina, M. & Schierwater, B. 2006. Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Systematic Biology 55 (1)), 97115.CrossRefGoogle Scholar
Diehl, P. E. 1979. Stratigraphy, depositional environments, and quantitative petrography of the pre-Cambrian-Cambrian Wood Canyon Formation, Death Valley. PhD thesis, University Park, PA: Pennsylvania State University.Google Scholar
Dornbos, S. Q. 2006. Evolutionary palaeoecology of early epifaunal echinoderms: response to increasing bioturbation levels during the Cambrian radiation. Palaeogeography, Palaeoclimatology, Palaeoecology 237, 225–39.CrossRefGoogle Scholar
Dornbos, S. Q., Bottjer, D. J. & Chen, J. Y. 2005. Paleoecology of benthic metazoans in the Early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: evidence for the Cambrian substrate revolution. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 4767.CrossRefGoogle Scholar
Droser, M. L., Jensen, S. & Gehling, J. G. 2002a. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: implications for the record of early bilaterians and sediment mixing. Proceedings of the National Academy of Sciences 99, 12,572–6.CrossRefGoogle ScholarPubMed
Droser, M. L., Jensen, S., Myrow, P. M. & Narbonne, G. M. 2002b. Lowermost Cambrian Ichnofabrics from the Chapel Island Formation, Newfoundland: implications for Cambrian Substrates. PALAIOS 17, 315.2.0.CO;2>CrossRefGoogle Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D. & Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–7.CrossRefGoogle ScholarPubMed
Fedo, C. M. & Cooper, J. D. 2001. Sedimentology and sequence stratigraphy of Neoproterozoic and Cambrian units across a craton-margin hinge zone, southeastern California, and implications for the early evolution of the Cordilleran margin. Sedimentary Geology 141, 501–22.CrossRefGoogle Scholar
Gaines, R. R., Briggs, D. E. G. & Yuanlong, Z. 2008. Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology 36, 755–8.CrossRefGoogle Scholar
Gaines, R. R., Kennedy, M. J. & Droser, M. L. 2005. A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 193205.CrossRefGoogle Scholar
Garson, D. E., Gaines, R. R., Droser, M. L., Liddell, W. D. & Sappenfield, A. D. 2012. Dynamic palaeoredox and exceptional preservation in the Cambrian Spence Shale of Utah. Lethaia 45, 164–77.CrossRefGoogle Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. PALAIOS 14, 4057.CrossRefGoogle Scholar
Gehling, J. G. & Droser, M. L. 2009. Textured organic surfaces associated with the Ediacara biota in South Australia. Earth-Science Reviews 96, 196206.CrossRefGoogle Scholar
Gehling, J. G. & Droser, M. L. 2013. How well do fossil assemblages of the Ediacara Biota tell time? Geology 41, 447–50.CrossRefGoogle Scholar
Gehling, J. G., Narbonne, G. M. & Anderson, M. M. 2000. The first named Ediacaran body fossil, Aspidella terranovica . Palaeontology 43, 427–56.CrossRefGoogle Scholar
Hagadorn, J. W. & Belt, E. S. 2008. Stranded in upstate New York: Cambrian Scyphomedusae from the Potsdam Sandstone. PALAIOS 23, 424–41.CrossRefGoogle Scholar
Hagadorn, J. W. & Bottjer, D. J. 1997. Wrinkle structures: microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic–Phanerozoic transition. Geology 25, 1047–50.2.3.CO;2>CrossRefGoogle Scholar
Hagadorn, J. W., Dott, R. H. Jr. & Damrow, D. 2002. Stranded on a Late Cambrian shoreline: medusae from central Wisconsin. Geology 30, 147–50.2.0.CO;2>CrossRefGoogle Scholar
Hagadorn, J. W. & Miller, R. F. 2011. Hypothesized Cambrian medusae from Saint John, New Brunswick, reinterpreted as sedimentary structures. Atlantic Geology 47, 6680.CrossRefGoogle Scholar
Hamner, W. M., Hamner, P. P. & Strand, S. W. 1994. Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in Saanich Inlet, British Columbia. Marine Biology 119, 347–56.CrossRefGoogle Scholar
Jensen, S., Droser, M. L. & Gehling, J. G. 2005. Trace fossil preservation and the early evolution of animals. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 1929.CrossRefGoogle Scholar
Jensen, S., Gehling, J. G., Droser, M. L. & Grant, S. W. 2002. A scratch circle origin for the medusoid fossil Kullingia. Lethaia 35, 291–9.CrossRefGoogle Scholar
Laflamme, M., Darroch, S. A., Tweedt, S. M., Peterson, K. J. & Erwin, D. H. 2013. The end of the Ediacara biota: Extinction, biotic replacement, or Cheshire Cat? Gondwana Research 23 (2), 558573.CrossRefGoogle Scholar
MacGabhann, B. A. 2007. Discoidal fossils of the Ediacaran biota: a review of current understanding. In The Rise and Fall of the Ediacaran Biota (eds Vickers-Rich, P. and Komarower, P.), pp. 297313. Geological Society, London, Special Publications 286(1).Google Scholar
Magome, S., Yamashita, T., Kohama, T., Kaneda, A., Hayami, Y., Takahashi, S. & Takeoka, H. 2007. Jellyfish patch formation investigated by aerial photography and drifter experiment. Journal of Oceanography 63, 761–73.CrossRefGoogle Scholar
Mapstone, N. B. & McIlroy, D. 2006. Ediacaran fossil preservation: taphonomy and diagenesis of a discoid biota from the Amadeus Basin, central Australia. Precambrian Research 149, 126–48.CrossRefGoogle Scholar
Mata, S. A., Corsetti, C. L., Corsetti, F.A., Awramik, S. M. & Bottjer, D. J. 2012. Lower Cambrian anemone burrows from the Upper Member of the Wood Canyon Formation, Death Valley Region, United States: paleoecological and paleoenvironmental significance. PALAIOS 27, 594606.CrossRefGoogle Scholar
Noffke, N., Knoll, A. H. & Grotzinger, J. P. 2002. Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: a case study from the Upper Neoproterozoic Nama Group, Namibia. PALAIOS 17, 533–44.2.0.CO;2>CrossRefGoogle Scholar
Norris, R. D. 1989. Cnidarian taphonomy and affinities of the Ediacara biota. Lethaia 22, 381–93.CrossRefGoogle Scholar
Peterson, K. J. & Butterfield, N. J. 2005. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences 102, 9547–52.CrossRefGoogle ScholarPubMed
Peterson, K. J., Cotton, J. A., Gehling, J. G. & Pisani, D. 2008. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 1435–43.CrossRefGoogle ScholarPubMed
Pickerill, R. K. & Harris, I. M. 1979. A reinterpretation of Astropolithon hindii Dawson 1878. Journal of Sedimentary Research 49, 1029–36.Google Scholar
Pickerill, R. K. 1982. Cambrian medusoids from the St. John Group, southern New Brunswick. Canadian Geological Survey Paper 82 (1B), 7176.Google Scholar
Pickerill, R. K. 1990. Cambrian medusoids from the Saint John Group, southern New Brunswick. Canadian Paleontology/Biostratigraphy Seminar, Program with Abstracts. Kingston, Ontario: Queens University, 41p.Google Scholar
Prave, A. R. 1992. Depositional and sequence stratigraphic framework of the Lower Cambrian Zabriskie Quartzite: implications for regional correlations and the Early Cambrian paleogeography of the Death Valley region of California and Nevada. Geological Society of America Bulletin 104, 505–15.2.3.CO;2>CrossRefGoogle Scholar
Purcell, J. E. 2003. Predation on zooplankton by large jellyfish, Aurelia labiata, Cyanea capillata and Aequorea aequorea, in Prince William Sound, Alaska. Marine Ecology Progress Series 246, 137–52.CrossRefGoogle Scholar
Purcell, J. E. 2005. Climate effects on formation of jellyfish and ctenophore blooms: a review. Journal of the Marine Biological Association of the United Kingdom 85, 461–76.CrossRefGoogle Scholar
Rasband, W. S. 1997–2008. ImageJ. Bethesda, MD: US National Institutes of Health.Google Scholar
Reisser, J., Proietti, M., Sazima, I., Kinas, P., Horta, P. & Secchi, E. 2013. Feeding ecology of the green turtle (Chelonia mydas) at rocky reefs in western South Atlantic. Marine Biology 160 (12), 3169–79.CrossRefGoogle Scholar
Schäfer, W. & Craig, G. Y. 1972. Ecology and Palaeoecology of Marine Environments. Edinburgh: Oliver and Boyd, 568 pp.Google Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios 14 (1), 8693.CrossRefGoogle Scholar
Seilacher, A. 2001. Concretion morphologies reflecting diagenetic and epigenetic pathways. Sedimentary Geology 143 (1), 4157.CrossRefGoogle Scholar
Seilacher, A., Buatois, L. A. & Mangano, M. G. 2005. Trace fossils in the Ediacaran–Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology 227, 323–56.CrossRefGoogle Scholar
Seilacher, A. & Pflüger, F. 1994. From biomats to benthic agriculture: a biohistoric revolution. In Biostabilization of Sediments: Bibliotheks and Krumbe (eds Paterson, W. E. et al.), pp. 97105. Oldenburg: Information System der Carl von Ossietzky Universitat.Google Scholar
Sloss, L. 1963. Sequences in the cratonic interior of North America. Geological Society of America Bulletin 74 (2), 93114.CrossRefGoogle Scholar
Stewart, J. H. 1970. Upper Precambrian and lower Cambrian strata in the southern Great Basin, California and Nevada. US Geological Survey Professional Paper no. 620, 206 pp.CrossRefGoogle Scholar
Stewart, J. H. 1972. Initial deposits in the Cordilleran Geosyncline: evidence of a Late Precambrian (<850 m.y.) continental separation. Geological Society of America Bulletin 83, 1345–60.CrossRefGoogle Scholar
Tarhan, L. G. & Droser, M. L. 2014. Widespread delayed mixing in early to middle Cambrian marine shelfal settings. Palaeogeography, Palaeoclimatology, Palaeoecology 399, 310–22.CrossRefGoogle Scholar
Tarhan, L. G., Droser, M. L. & Gehling, J. G. 2010. Taphonomic controls on Ediacaran diversity: uncovering the holdfast origin of morphologically variable enigmatic structures. PALAIOS 25, 823–30.CrossRefGoogle Scholar
Tarhan, L. G., Droser, M. L., Gehling, J. G. & Dzaugis, M. P. 2015a. Taphonomy and morphology of the Ediacara form genus Aspidella. Precambrian Research 257, 124–36.CrossRefGoogle Scholar
Tarhan, L. G., Droser, M. L., Planavsky, N. J. & Johnston, D. 2015b. Protracted development of bioturbation through the early Palaeozoic Era. Nature Geoscience 8, 865–9.CrossRefGoogle Scholar
Young, G. A. & Hagadorn, J. W. 2010. The fossil record of cnidarian medusae. Palaeoworld 19, 212–21.CrossRefGoogle Scholar