Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T05:37:20.782Z Has data issue: false hasContentIssue false

Early Triassic disaster and opportunistic foraminifers in South China

Published online by Cambridge University Press:  07 August 2015

HAIJUN SONG*
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Nanjing, 210008, PR China
JINNAN TONG*
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
PAUL B. WIGNALL
Affiliation:
School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
MAO LUO
Affiliation:
School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, Burwood, Victoria 3125, Australia
LI TIAN
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
HUYUE SONG
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
YUNFEI HUANG
Affiliation:
School of Geoscience, Yangtze University, Wuhan 430100, PR China
DAOLIANG CHU
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
*
Authors for correspondence: [email protected] and [email protected]
Authors for correspondence: [email protected] and [email protected]

Abstract

Survival and recovery are important dynamic processes of biotic evolution during major geological transitions. Disaster and opportunistic taxa are two significant groups that dominate the ecosystem in the aftermath of mass extinction events. Disaster taxa appear immediately after such crises whilst opportunists pre-date the crisis but also bloom in the aftermath. This paper documents three disaster foraminiferal species and seven opportunistic foraminiferal species from Lower Triassic successions of South China. They are characterized by extreme high abundance and low diversity and occurred occasionally in Griesbachian, Smithian and Spathian strata. The characteristics (small size, simple morphology) and stratigraphic ranges of these groups suggest that r-selection is a commonly used strategy for survivors to cope with either harsh post-extinction conditions and/or environments lacking incumbents.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T. J., Chen, Z. Q., Fraiser, M. L. & Twitchett, R. J. 2011. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 111.Google Scholar
Altiner, D., Baud, A., Guex, J. & Stampfli, G. 1980. La limite Permien–Trias dans quelques localités du Moyen-Orient: recherches stratigraphiques et micropaléontologiques. Rivista Italiana di Paleontologia 85, 683714.Google Scholar
Altiner, D., Groves, J. R. & Özkan-Altiner, S. 2005. Calcareous foraminiferal recovery from the end-Permian mass extinction, southern Turkey. Albertiana 33, 14–7.Google Scholar
Altiner, D. & Zaninetti, L. 1981. Le Trias dans la région de Pinarbasi, Taurus oriental, Turquie: unités lithologiques, micropaleontologie, milieux de dépôt. Rivista Italiana di Paleontologia 86, 705–60.Google Scholar
Baud, A., Bronnimann, P. & Zaninetti, L. 1974. Sur la presence de Meandrospira pusilla (Ho) (Foraminifere), dans le Trias inferieur de Kuh-e-Ali Bashi, Julfa, NW Iran. Palaeontologische Zeitschrift 48, 205–13.CrossRefGoogle Scholar
Blau, J. 1989. Aulotortus (?) bakonyensis n. sp. (Involutinina, Foraminifera) from the Dogger of Hungary. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1989, 459–66.CrossRefGoogle Scholar
Brönnimann, P., Zaninetti, L. & Bozorgnia, F. 1972. Triassic (Skythian) smaller foraminifera from the Elika Formation of the central Alborz, northern Iran, and from the Siusi Formation of the Dolomites, northern Italy. Mitteilung Gesellschaft der Geologie und Bergsbaustudenten, Innsbruck 21, 861–84.Google Scholar
Bucur, I. I., Strutinski, C. & Paica, M. 1997. A new occurrence of Triassic deposits NE of. Oravita (Southern Carpathians, Rumania) and its paleotectonic significance. Geologica Carpathica 48, 3948.Google Scholar
Chen, J., Henderson, C. M. & Shen, S. 2008. Conodont succession around the Permian–Triassic boundary at the Huangzhishan section, Zhejiang and its stratigraphic correlation. Acta Palaeontologica Sinica 47, 91114.Google Scholar
Chen, Z. Q., Tong, J., Zhang, K., Yang, H., Liao, Z., Song, H. & Chen, J. 2009. Environmental and biotic turnover across the Permian–Triassic boundary on a shallow carbonate platform in western Zhejiang, South China. Australian Journal of Earth Sciences 56, 775–97.CrossRefGoogle Scholar
Deleau, P. & Marie, P. 1959. Les fusulinides du Westphalien C du Bassin d’Abadla et quelques autres foraminiferes du Carbonifere algerien (region de Colomb-Bechar). Service de la carte géologique de l'Algérie, ns Bulletin 25, 43160.Google Scholar
Ezaki, Y., Liu, J. & Adachi, N. 2003. Earliest Triassic microbialite micro- to megastructures in the Huaying area of Sichuan Province, South China: implications for the nature of oceanic conditions after the end-Permian extinction. Palaios 18, 388402.Google Scholar
Ezaki, Y., Liu, J., Nagano, T. & Adachi, N. 2008. Geobiological aspects of the earliest Triassic microbialites along the southern periphery of the tropical Yangtze platform: initiation and cessation of a microbial regime. Palaios 23, 356–69.Google Scholar
Feng, Z., Bao, Z. & Liu, S. 1997. Lithofacies Palaeogeography of Early and Middle Triassic of South China. Beijing: Petroleum Industry Press.Google Scholar
Forel, M. B., Crasquin, S., Kershaw, S., Feng, Q. L. & Collin, P. Y. 2009. Ostracods (Crustacea) and water oxygenation in the earliest Triassic of South China: implications for oceanic events at the end-Permian mass extinction. Australian Journal of Earth Sciences 56, 815–23.Google Scholar
Fraiser, M. L. & Bottjer, D. J. 2009. Opportunistic behaviour of invertebrate marine tracemakers during the Early Triassic aftermath of the end-Permian mass extinction. Australian Journal of Earth Sciences 56, 841–57.CrossRefGoogle Scholar
Gaillot, J. & Vachard, D. 2007. The Khuff Formation (Middle East) and time-equivalents in Turkey and South China: biostratigraphy from Capitanian to Changhsingian times (Permian), new foraminiferal taxa, and palaeogeographical implications. Coloquios de Paleontología 57, 37223.Google Scholar
Groves, J. R. & Altiner, D. 2005. Survival and recovery of calcareous foraminifera pursuant to the end-Permian mass extinction. Comptes Rendus Palevol 4, 487500.Google Scholar
Groves, J. R., Altiner, D. & Rettori, R. 2005. Extinction, survival, and recovery of lagenide foraminifers in the Permian–Triassic boundary interval, Central Taurides, Turkey. Journal of Paleontology 79 (suppl.), 138.Google Scholar
Groves, J. R., Rettori, R., Payne, J. L., Boyce, M. D. & Altiner, D. 2007. End-Permian mass extinction of Lagenide foraminifers in the Southern Alps (Northern Italy). Journal of Paleontology 81, 415–34.Google Scholar
Haig, D. W. & McCartain, E. 2012. Intraspecific variation in Triassic ophthalmidiid foraminifera from Timor. Revue de Micropaléontologie 55, 3952.Google Scholar
Hallam, A. 1991. Why was there a delayed radiation after the end-Palaeozoic extinctions? Historical Biology 5, 257–62.Google Scholar
Hallam, A. & Wignall, P. B. 1997. Mass Extinctions and their Aftermath. Oxford: Oxford University Press.Google Scholar
Harries, P. J., Kauffman, E. G. & Hansen, T. A. 1996. Models for biotic survival following mass extinction. In Biotic Recovery from Mass Extinction Events (ed. Hart, M. B.). pp. 4160. Geological Society of London, Special Publication no. 102Google Scholar
He, L., Wang, Y., Woods, A., Li, G., Yang, H. & Liao, W. 2012. Calcareous tubeworms as disaster forms after the end-Permian mass extinction in South China. Palaios 27, 878–86.Google Scholar
He, Y. 1988. Early and Middle Triassic foraminifera from Jiangsu and Anhui provinces, China. Acta Micropalaeontologica Sinica 5, 8592 (in Chinese with English abstract).Google Scholar
He, Y. 1993. Triassic foraminifera from Northeast Sichuan and South Shanxi, China. Acta Palaeontologica Sinica 32, 170–87 (in Chinese with English abstract).Google Scholar
Ho, Y. 1959. Triassic foraminifera from the Chialingkiang limestone of south Szechuan. Acta Palaeontologica Sinica 7, 387418.Google Scholar
Horwitz, R. & Pidgeon, R. 1993. 3.1 Ga tuff from the Sholl Belt in the West Pilbara: further evidence for diachronous volcanism in the Pilbara Craton of Western Australia. Precambrian Research 60, 175–83.CrossRefGoogle Scholar
Joachimski, M. M., Lai, X., Shen, S., Jiang, H., Luo, G., Chen, B., Chen, J. & Sun, Y. 2012. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–98.Google Scholar
Kamoun, F., Peybernès, B., Ciszak, R. & Calzada, S. 2001. Triassic palaeogeography of Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology 172, 223–42.Google Scholar
Kauffman, E. G. & Harries, P. J. 1996. The importance of crisis progenitors in recovery from mass extinction. In Biotic Recovery from Mass Extinction Events (ed. Hart, M. B.), pp. 1539. Geological Society of London, Special Publication no. 102.Google Scholar
Kilani-Mazraoui, F., Razgallah-Gargouri, S. & Mannai-Tayech, B. 1990. The Permo-Triassic of Southern Tunisia – biostratigraphy and palaeoenvironment. Review of Palaeobotany and Palynology 66, 273–91.Google Scholar
Kobayashi, F. 2004. Late Permian foraminifers from the limestone block in the southern Chichibu terrane of West Shikoku, SW Japan. Journal of Paleontology 78, 6270.Google Scholar
Kobayashi, F. 2012. Middle and Late Permian Foraminifers from the Chichibu Belt, Takachiho Area, Kyushu, Japan: implications for faunal events. Journal of Paleontology 86, 669–87.Google Scholar
Kobayashi, F., Martini, R., Rettori, R., Zaninetti, L., Ratanasthien, B., Saegusa, H. & Nakaya, H. 2006. Triassic foraminifers of the Lampang Group (Northern Thailand). Journal of Asian Earth Sciences 27, 312–25.CrossRefGoogle Scholar
Kobayashi, F., Martini, R. & Zaninetti, L. 2005. Anisian foraminifers from allochthonous limestones of the Tanoura formation (Kurosegawa Terrane, West Kyushu, Japan). Geobios 38, 751–63.Google Scholar
Krainer, K. & Vachard, D. 2011. The Lower Triassic Werfen Formation of the Karawanken Mountains (Southern Austria) and its disaster survivor microfossils, with emphasis on Postcladella n. gen. (Foraminifera, Miliolata, Cornuspirida). Revue de Micropaléontologie 54, 5985.CrossRefGoogle Scholar
Kuss, J. 1988. Microfacies and foraminifera of Middle Triassic limestones (Anisian-Carnian?) from Gebel Araif el Naqa (Sinai, Egypt). Facies 19, 6175.Google Scholar
Lai, X. L., Yang, F., Hallam, A. & Wignall, P. B. 1996. The Shangsi section candidate of the Global Stratotype Section and Point of the Permian–Triassic boundary. In The Paleozoic–Mesozoic Boundary Candidates of Global Stratotype Section and Point of the Permian–Triassic Boundary (ed. Yin, H.), pp. 113–24. Wuhan: China University of Geosciences Press.Google Scholar
Lehrmann, D. J., Wei, J. & Enos, P. 1998. Controls on facies architecture of a large Triassic carbonate platform: the Great Bank of Guizhou, Nanpanjiang Basin, South China. Journal of Sedimentary Research 68, 311–26.CrossRefGoogle Scholar
Li, Z., Zhan, L., Dai, J., Jin, R., Zhu, X., Zhang, J., Huang, H., Xu, D., Yan, Z. & Li, H. 1989. Study on the Permian–Triassic Biostratigraphy and Event Stratigraphy of Northern Sichuan and Southern Shaanxi. Beijing: Geological Publishing House.Google Scholar
Loeblich, A. R. Jr. & Tappan, H. 1988. Foraminiferal Genera and Their Classification. New York: Van Nostrand Reinhold Co.Google Scholar
Márquez, L. 2005. Foraminiferal fauna recovered after the Late Permian extinctions in Iberia and the westernmost Tethys area. Palaeogeography, Palaeoclimatology, Palaeoecology 229, 137–57.Google Scholar
Maurer, F., Rettori, R. & Martini, R. 2008. Triassic stratigraphy, facies and evolution of the Arabian Shelf in the northern United Arab Emirates. International Journal of Earth Sciences 97, 765–84.Google Scholar
Nestell, G. P., Kolar-Jurkovsek, T., Jurkovsek, B. & Aljinovic, D. 2011. Foraminifera from the Permian–Triassic transition in western Slovenia. Micropaleontology 57, 197222.CrossRefGoogle Scholar
Oberhauser, R. 1957. Ein Vorkommen von Trocholina and Paratrocholina in der Ostalpinen Trias. Jahrbuch der Geologischen Bundesanstalt 100, 257–67.Google Scholar
Okuyucu, C., Ivanova, D., Bedi, Y. & Ergen, A. 2014. Discovery of an earliest Triassic, post-extinction foraminiferal assemblage above the Permian–Triassic boundary, Strandzha nappes, north-west Turkey. Geological Quarterly 58, 117–24.Google Scholar
Payne, J. L., Summers, M., Rego, B. L., Altiner, D., Wei, J., Yu, M. & Lehrmann, D. J. 2011. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction. Paleobiology 37, 409–25.Google Scholar
Pérez-López, A., Márquez, L. & Pérez-Valera, F. 2005. A foraminiferal assemblage as a bioevent marker of the main Ladinian transgressive stage in the Betic Cordillera, southern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 224, 217–31.Google Scholar
Popescu, D. A. & Popescu, L. G. 2005. The Olenekian carbonates of the Bucovinian nappe (the central sector of the Haghimas syncline, Eastern Carpathians): lithology and microfacies. Studia Universitatis Babeş-Bolyai, Geologia 50, 5362.Google Scholar
Pronina-Nestell, G. P. & Nestell, M. K. 2001. Late Changhsingian foraminifers of the Northwestern Caucasus. Micropaleontology 47, 205–34.Google Scholar
Pruss, S. B. & Bottjer, D. J. 2004. Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. Palaios 19, 551–64.Google Scholar
Rego, B. L., Wang, S. C., Altiner, D., & Payne, J. L. 2012. Within- and among-genus components of size evolution during mass extinction, recovery, and background intervals: a case study of Late Permian through Late Triassic foraminifera. Paleobiology 38, 627–43.Google Scholar
Rettori, R. 1994. Replacement name Hoyenella, gen. n. (Triassic Foraminiferida, Miliolina) for Glomospira sinensis Ho, 1959. Bolletino Societá Paleontologica Italiana 33, 341–3.Google Scholar
Rettori, R., Angiolini, L. & Muttoni, G. 1994. Lower and Middle Triassic foraminifera from the Eros limestone, Hydra Island, Greece. Journal of Micropalaeontology 13, 2546.Google Scholar
Rodland, D. L. & Bottjer, D. J. 2001. Biotic recovery from the end-Permian Mass Extinction: behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios 16, 95101.Google Scholar
Schubert, J. K. & Bottjer, D. J. 1992. Early Triassic stromatolites as post-mass extinction disaster forms. Geology 20, 883–6.Google Scholar
Schubert, J. K. & Bottjer, D. J. 1995. Aftermath of the Permian-Triassic mass extinction event: paleoecology of Lower Triassic carbonates in the western USA. Palaeogeography, Palaeoclimatology, Palaeoecology 116, 139.Google Scholar
Shen, S. & He, X. 1991. Changhsingian brachiopod assemblage sequence in Zhongliang Hill, Chongqing. Journal of Stratigraphy 15, 189–96.Google Scholar
Song, H., Tong, J., Algeo, T. J., Horacek, M., Qiu, H., Song, H., Tian, L. & Chen, Z.-Q. 2013 a. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: implications for oceanographic changes related to Siberian Traps volcanism. Global and Planetary Change 105, 720.Google Scholar
Song, H., Tong, J. & Chen, Z. Q. 2009. Two episodes of foraminiferal extinction near the Permian–Triassic boundary at the Meishan section, South China. Australian Journal of Earth Sciences 56, 765–73.Google Scholar
Song, H., Tong, J. & Chen, Z. Q. 2011. Evolutionary dynamics of the Permian–Triassic foraminifer size: evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 98110.Google Scholar
Song, H., Tong, J., Chen, Z. Q., Yang, H. & Wang, Y. 2009. End-Permian mass extinction of foraminifers in the Nanpanjiang Basin, South China. Journal of Paleontology 83, 718–38.Google Scholar
Song, H., Tong, J., Xiong, Y., Sun, D., Tian, L. & Song, H. 2012 a. The large increase of δ13Ccarb-depth gradient and the end-Permian mass extinction. Science China Earth Sciences 55, 1101–09.Google Scholar
Song, H., Tong, J., Zhang, K., Wang, Q. & Chen, Z. Q. 2007. Foraminifers surviving from the end-Permian mass extinction at Meishan, Changxing, China. Palaeoworld 22, 105–19.CrossRefGoogle Scholar
Song, H., Wignall, P. B., Chen, Z. Q., Tong, J., Bond, D. P. G., Lai, X., Zhao, X., Jiang, H., Yan, C., Niu, Z., Chen, J., Yang, H. & Wang, Y. 2011. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology 39, 739–42.Google Scholar
Song, H., Wignall, P. B., Chu, D., Tong, J., Sun, Y., Song, H., He, W. & Tian, L. 2014. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Scientific Reports 4, 4132. doi: 10.1038/srep04132.Google Scholar
Song, H., Wignall, P. B., Tong, J., Bond, D. P. G., Song, H., Lai, X., Zhang, K., Wang, H. & Chen, Y. 2012 b. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth and Planetary Science Letters 353–354, 1221.Google Scholar
Song, H., Wignall, P. B., Tong, J. & Yin, H. 2013 b. Two pulses of extinction during the Permian-Triassic crisis. Nature Geoscience 6, 52–6.Google Scholar
Song, H., Yang, L., Tong, J., Chen, J., Tian, L., Song, H. & Chu, D. 2015. Recovery dynamics of foraminifers and algae following the Permian–Triassic extinction in Qingyan, South China. Geobios 48, 7183.Google Scholar
Stanley, S. M. 2007. An analysis of the history of marine animal diversity. Paleobiology 33, 155.Google Scholar
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L. & Lai, X. 2012 a. Lethally hot temperatures during the Early Triassic Greenhouse. Science 338, 366–70.Google Scholar
Sun, D., Tong, J., Xiong, Y., Tian, L. & Yin, H. 2012 b. Conodont biostratigraphy and evolution across Permian–Triassic boundary at Yangou Section, Leping, Jiangxi Province, South China. Journal of Earth Science 23, 311–25.Google Scholar
Tian, L., Tong, J., Algeo, T. J., Song, H., Song, H., Chu, D., Shi, L. & Bottjer, D. J. 2014 a. Reconstruction of Early Triassic ocean redox conditions based on framboidal pyrite from the Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 412, 6879.CrossRefGoogle Scholar
Tian, L., Tong, J., Sun, D., Xiong, Y., Wang, C., Song, H., Song, H. & Huang, Y. 2014 b. The microfacies and sedimentary responses to the mass extinction during the Permian-Triassic transition at Yangou Section, Jiangxi Province, South China. Science China Earth Sciences 57, 113.Google Scholar
Tong, J. & Kuang, W. 1990. A study of the Changxingian foraminifera and microfacies in Liangfengya, Chongqing, Sichuan Province. Earth Science – Journal of China University of Geosciences 15, 337–44 (in Chinese with English abstract).Google Scholar
Ünal, E., Altiner, D., Yilmaz, I. O., & Ozkan-Altiner, S. 2003. Cyclic sedimentation across the Permian-Triassic boundary (Central Taurides, Turkey). Rivista Italiana di Paleontologia e Stratigrafia 109, 359–76.Google Scholar
Velić, I. 2007. Stratigraphy and palaeobiogeography of Mesozoic benthic foraminifera of the Karst Dinarides. Geologia Croatica 60, 186.Google Scholar
Vuks, V. J. 2007. Olenekian (Early Triassic) foraminifers of the Gorny Mangyshlak, Eastern Precaucasus and Western Caucasus. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 8292.Google Scholar
Wang, Q., Tong, J., Song, H. & Yang, H. 2009. Ecological evolution across the Permian/Triassic boundary at the Kangjiaping Section in Cili County, Hunan Province, China. Science in China Series D: Earth Sciences 52, 797806.Google Scholar
Wang, Y., Tong, J., Wang, J. & Zhou, X. 2005. Calcimicrobialite after end-Permian mass extinction in South China and its palaeoenvironmental significance. Chinese Science Bulletin 50, 665–71.Google Scholar
Wignall, P. B. & Hallam, A. 1993. Griesbachian (Earliest Triassic) palaeoenvironmental changes in the Salt Range, Pakistan and southeast China and their bearing on the Permo-Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 102, 215–37.Google Scholar
Wignall, P. B. & Hallam, A. 1996. Facies change and the end-Permian mass extinction in SE Sichuan, China. Palaios 11, 587–96.Google Scholar
Wignall, P. B., Hallam, A., Lai, X. L. & Yang, F. 1995. Palaeoenvironmental changes across the Permian/Triassic boundary at Shangsi (N. Sichuan, China). Historical Biology 10, 175–89.CrossRefGoogle Scholar
Wignall, P. B. & Twitchett, R. J. 1999. Unusual intraclastic limestones in Lower Triassic carbonates and their bearing on the aftermath of the end-Permian mass extinction. Sedimentology 46, 303–16.Google Scholar
Wignall, P. B. & Twitchett, R. J. 2002. Extent, duration, and nature of the Permian-Triassic superanoxic event. In Catastrophic Events and Mass Extinctions; Impacts and Beyond (eds Koeberl, C. & MacLeod, K. G.), pp. 395413. Geological Society of America Special Publication no. 356.Google Scholar
Yang, H., Chen, Z. Q., Wang, Y., Tong, J., Song, H. & Chen, J. 2011. Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 111–28.Google Scholar
Yang, L., Song, H., Tong, J., Chu, D. & Tian, L. 2013. Latest Permian extinction of fusulinids at the Kangjiaping section, Cili, Hunan. Acta Micropalaeontologica Sinica 30, 353–46.Google Scholar
Yang, S. & Sun, C. 1990. Discovery of Permian–Triassic conodont fauna in Tieshikou Area, Xinfeng, Jiangxi and its geological significance. Acta Scicentiarum Naturalum Universitis Pekinesis 26, 243–56.Google Scholar
Yang, Z., Yin, H., Wu, S., Yang, F., Ding, M. & Xu, G. 1987. Permian–Triassic Boundary Stratigraphy and Fauna of South China. Beijing: Geological Publishing House.Google Scholar
Yin, H. 1985. Bivalves near the Permian–Triassic boundary in South China. Journal of Paleontology 59, 572600.Google Scholar
Yin, H., Zhang, K., Tong, J., Yang, Z. & Wu, S. 2001. The Global Stratotype Section and Point (GSSP) of the Permian–Triassic boundary. Episodes 24, 102–14.Google Scholar
Zaninetti, L. & Brönnimann, P. 1975. Triassic foraminifera from Pakistan. Rivista Italiana di Paleontologia 81, 257–80.Google Scholar
Zaninetti, L., Rettori, R. & Martini, R. 1994. Paulbronnimanninae Rettori and Zaninetti, 1993 (Foraminiferida, Ammodiscidae) and other Anisian foraminifers from the Piz da Peres section (Valdaora-Olang, Pusteria Valley, Dolomites, NE Italy). Rivista Italiana di Paleontologia e Stratigrafia 100, 339–50.Google Scholar
Zhu, X. 1999. On a taking shape era of the reef s in Dongling Area of northwest Jiangxi. Journal of Jiangxi Normal University 23, 252–8.Google Scholar
Zhu, X., Wang, C., Lu, H., Mu, X., Zhang, L., Qin, Z., Luo, H., Yang, W. & Deng, Z. 1994. Permian–Triassic boundary in Jiangxi, China. Acta Micropalaeontologica Sinica 11, 439–52.Google Scholar
Zonneveld, J.-P., MacNaughton, R. B., Utting, J., Beatty, T. W., Pemberton, S. G. & Henderson, C. M. 2010. Sedimentology and ichnology of the Lower Triassic Montney Formation in the Pedigree-Ring/Border-Kahntah River area, northwestern Alberta and northeastern British Columbia. Bulletin of Canadian Petroleum Geology 58, 115–40.Google Scholar