Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T04:53:58.811Z Has data issue: false hasContentIssue false

Early Cretaceous vertebrates from the Xinlong Formation of Guangxi (southern China): a review

Published online by Cambridge University Press:  02 July 2015

JINYOU MO
Affiliation:
Natural History Museum of Guangxi, Nanning 530012, China
ERIC BUFFETAUT*
Affiliation:
CNRS (UMR 8538), Laboratoire de Géologie de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
HAIYAN TONG
Affiliation:
Palaeontological Research and Education Centre, Mahasarakham University, Kantarawichai, Mahasarakham 44150, Thailand Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai St, Beijing 100044, China
ROMAIN AMIOT
Affiliation:
LGLTPE, UMR ENS CNRS 5276, Université Claude Bernard Lyon, 1, Campus de la Doua Bâtiment Géode, 2, rue Raphaël Dubois F-69622 Villeurbanne Cedex, France
LIONEL CAVIN
Affiliation:
Département de Géologie et Paléontologie, Muséum d'Histoire Naturelle, CP6434, 1211 Genève 6, Switzerland
GILLES CUNY
Affiliation:
LGLTPE, UMR ENS CNRS 5276, Université Claude Bernard Lyon, 1, Campus de la Doua Bâtiment Géode, 2, rue Raphaël Dubois F-69622 Villeurbanne Cedex, France
VARAVUDH SUTEETHORN
Affiliation:
Palaeontological Research and Education Centre, Mahasarakham University, Kantarawichai, Mahasarakham 44150, Thailand
SURAVECH SUTEETHORN
Affiliation:
Palaeontological Research and Education Centre, Mahasarakham University, Kantarawichai, Mahasarakham 44150, Thailand
SHAN JIANG
Affiliation:
Natural History Museum of Guangxi, Nanning 530012, China
*
Author for correspondence: [email protected]

Abstract

The vertebrate assemblage from the Early Cretaceous non-marine Xinlong Formation of the Napai Basin, in the south-western part of Guangxi Zhuang Autonomous Region (southern China), is reviewed. The assemblage includes chondrichthyans (at least six species of hybodont sharks including Hybodus, Thaiodus, Heteroptychodus and Acrorhizodus), actinopterygians (Halecomorphi and Ginglymodi), turtles (the adocid Shachemys and the carettochelyid Kizylkumemys), crocodilians (cf. Theriosuchus) and dinosaurs (the sauropods Fusuisaurus and Liubangosaurus, carcharodontosaurid and spinosaurid theropods, iguanodontians and a possible psittacosaurid). This assemblage shows many similarities to those from non-marine formations of the Khorat Group of north-eastern Thailand. It seems to be particularly close to that from the Khok Kruat Formation, considered as Aptian in age, as shown especially by sharks and turtles and by the presence of iguanodontians. An Aptian age is therefore proposed for the Xinlong Formation. A study of the stable oxygen and carbon isotope compositions of reptile apatite suggests that this part of South China experienced subtropical arid conditions during the deposition of the Xinlong Formation. In its composition, the vertebrate fauna from the Xinlong Formation seems to be more similar to coeval faunas from SE Asia than to assemblages from northern China (including the Jehol Biota). Although this may partly reflect different depositional and taphonomic environments (fluvial for the Xinlong Formation versus lacustrine for the Jehol Biota) it seems likely that, during Early Cretaceous time, southern China and SE Asia were part of a distinct zoogeographical province, different from that corresponding to northern China. This may be the result of both climatic differences (with relatively cool climates in northern China versus a subtropical climate in the south) and geographical barriers such as mountain chains.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allain, R., Taquet, P., Battail, B., Dejax, J., Richir, P., Veran, M., Limon-Duparcmeur, F., Vacant, R., Mateus, O., Sayarath, P., Kenthavong, B. & Pouyavong, S. 1999. Un nouveau genre de dinosaure sauropode de la formation des Grès supérieurs (Aptien-Albien) du Laos. Comptes Rendus de l'Académie des Sciences de Paris 329, 609–16.Google Scholar
Allain, R., Xaisanavong, T., Richir, P. & Khentavong, B. 2012. The first definitive Asian spinosaurid (Dinosauria: Theropoda) from the Early Cretaceous of Laos. Naturwissenschaften 99, 369–77.CrossRefGoogle ScholarPubMed
Amiot, R., Buffetaut, E., Lécuyer, C., Wang, X., Boudad, L., Ding, Z., Fourel, F., Hutt, S., Martineau, F., Medeiros, M. A., Mo, J., Simon, L., Suteethorn, V., Sweetman, S., Tong, H., Zhang, F. & Zhou, Z. 2010. Oxygen isotope evidence for semi-aquatic habits among spinosaurid theropods. Geology 38, 139–42.CrossRefGoogle Scholar
Amiot, R., Wang, X., Zhou, Z., Wang, X., Buffetaut, E., Lécuyer, C., Ding, Z., Fluteau, F., Hibino, T., Kusuhashi, N., Mo, J., Suteethorn, V., Wang, Y., Xu, X. & Zhang, F. 2011. Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous Climates. Proceedings of the National Academy of Sciences 108, 5179–83.CrossRefGoogle ScholarPubMed
Amiot, R., Wang, X., Zhou, Z., Wang, X., Lécuyer, C., Buffetaut, E., Fluteau, F., Ding, Z., Kusuhashi, N., Mo, J., Philippe, M., Suteethorn, V., Wang, Y. & Xu, X. 2015. Environment and ecology of East Asian dinosaurs during the Early Cretaceous inferred from stable oxygen and carbon isotopes in apatite. Journal of Asian Earth Sciences 98, 358–70.CrossRefGoogle Scholar
Arambourg, C. 1952. Les Vertébrés fossiles des gisements de Phosphates d'Afrique du Nord (Maroc, Algérie, Tunisie). Notes et Mémoires du Service Géologique du Maroc 92, 1372.Google Scholar
Averianov, A. O., Voronkevich, A. V., Leschchinskiy, S. V. & Fayngertz, A. V. 2006. A ceratopsian dinosaur Psittacosaurus sibiricus from the Early Cretaceous of West Siberia, Russia and its phylogenetic relationships. Journal of Systematic Palaeontology 4, 359–95.CrossRefGoogle Scholar
Azuma, Y., Jintasakul, P., Shibata, M., Hanta, R. & Thasod, Y. 2011. New carcharodontosaurian theropod materials from the Lower Cretaceous Khok Kruat Formation of northeastern Thailand. In World Conference on Paleontology and Stratigraphy, Program and Abstracts, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, 5.Google Scholar
Boulenger, G. A. 1887. On a new family of pleurodiran turtles. Annals and Magazine of Natural History 19, 170–2.CrossRefGoogle Scholar
Brusatte, S. L., Benson, R. B. J., Chure, D. J., Xu, X., Sullivan, C. & Hone, D. E. W. 2009. The first definitive carcharodontosaurid (Dinosauria: Theropoda) from Asia and the delayed ascent of tyrannosaurids. Naturwissenschaften 96, 1051–58.CrossRefGoogle ScholarPubMed
Brusatte, S. L., Benson, R. B. J. & Xu, X. 2012. A reassessment of Kelmayisaurus petrolicus, a large theropod dinosaur from the Early Cretaceous of China. Acta Palaeontologica Polonica 57, 6572.CrossRefGoogle Scholar
Buffetaut, E. 1991. On the age of the Cretaceous dinosaur-bearing beds of southern Laos. Newsletters on Stratigraphy 24, 5973.CrossRefGoogle Scholar
Buffetaut, E. & Ingavat, R. 1986. Unusual theropod dinosaur teeth from the Upper Jurassic of Phu Wiang, northeastern Thailand. Revue de Paléobiologie 5, 217–20.Google Scholar
Buffetaut, E. & Suteethorn, V. 1992. A new species of the ornithischian dinosaur Psittacosaurus from the Early Cretaceous of Thailand. Palaeontology 35, 801–12.Google Scholar
Buffetaut, E. & Suteethorn, V. 2011. A new iguanodontian dinosaur from the Khok Kruat Formation (Early Cretaceous, Aptian) of northeastern Thailand. Annales de Paléontologie 97, 5162.CrossRefGoogle Scholar
Buffetaut, E. & Suteethorn, V. 2012. A carcharodontosaurid theropod (Dinosauria, Saurischia) from the Sao Khua Formation (Early Cretaceous, Barremian) of Thailand. Fundamental 20, 2730.Google Scholar
Buffetaut, E., Suteethorn, V. & Khansubha, S. 2007. The ceratopsian dinosaur Psittacosaurus in the Early Cretaceous of Southeast Asia: a review of old and recent finds. In Proceedings of the International Conference on Geology of Thailand: Towards Sustainable Development and Sufficiency Economy (ed. Tantiwanit, W.), pp. 338–43. Bangkok: Department of Mineral Resources.Google Scholar
Buffetaut, E., Suteethorn, V., Le Loeuff, J., Cuny, G., Tong, H. & Khansubha, S. 2002. A review of the sauropod dinosaurs of Thailand. In Proceedings of the Symposium on Geology of Thailand (ed. Mantajit, N.), pp. 95101. Bangkok: Department of Mineral Resources.Google Scholar
Buffetaut, E., Suteethorn, V., Le Loeuff, J., Khansubha, S., Tong, H. & Wongko, K. 2005. The dinosaur fauna from the Khok Kruat Formation (Early Cretaceous) of Thailand. In Proceedings of the International Conference on Geology, Geotechnology and Mineral Resources of Indochina (eds Wannakao, L., Youngme, W., Srisuk, K. & Lertsirivorakul, R.), pp. 575–81. Khon Kaen: Khon Kaen University.Google Scholar
Buffetaut, E., Suteethorn, V. & Tong, H. 2006. Dinosaur assemblages from Thailand: a comparison with Chinese faunas. In Papers from the 2005 Heyuan International Dinosaur Symposium (eds , J., Kobayashi, Y., Huang, D. & Lee, Y. N.), pp. 1937. Beijing: Geological Publishing House.Google Scholar
Buffetaut, E., Suteethorn, V., Tong, H. & Amiot, R. 2008. An Early Cretaceous spinosaurid theropod from southern China. Geological Magazine 145, 745–8.CrossRefGoogle Scholar
Cappetta, H. 1972. Les poissons crétacés et tertiaires du Bassin des Iullemmeden (République du Niger). Palaeovertebrata 5, 179251.Google Scholar
Cappetta, H., Buffetaut, E., Cuny, G. & Suteethorn, V. 2006. A new elasmobranch assemblage from the Lower Cretaceous of Thailand. Palaeontology 49, 547–55.CrossRefGoogle Scholar
Cappetta, H., Buffetaut, E. & Suteethorn, V. 1990. A new hybodont from the Lower Cretaceous of Thailand. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 11, 659–66.CrossRefGoogle Scholar
Cavin, L., Deesri, U. & Suteethorn, V. 2013. Osteology and relationships of Thaiichthys nov. gen.: a Ginglymodi from the Late Jurassic – Early Cretaceous of Thailand. Palaeontology 56, 183208.CrossRefGoogle Scholar
Cavin, L., Suteethorn, V., Buffetaut, E., Claude, J., Cuny, G., Le Loeuff, J. & Tong, H. 2007. The first sinamiid fish (Holostei, Halecomorpha) from South-east Asia (Early Cretaceous of Thailand). Journal of Vertebrate Paleontology 27, 827–37.CrossRefGoogle Scholar
Cope, E. D. 1870. On the Adocidae. Proceedings of the American Philosophical Society 11, 547–53.Google Scholar
Cuny, G., Suteethorn, V., Kamha, S. & Buffetaut, E. 2008. Hybodont sharks from the Lower Cretaceous Khok Kruat Formation of Thailand, and hybodont diversity during the Early Cretaceous. In Fishes and the Break-up of Pangaea (eds Cavin, L., Longbottom, A. & Richter, M.), pp. 93107. Geological Society, London, Special Publication no. 295.Google Scholar
Danilov, I. G., Syromyatnikova, E. V. & Sukhanov, V. B. 2007. Turtles of the genus Shachemys from the Upper Cretaceous of Asia. In Modern Paleontology: Classical and New Methods - 2007. Third All-Russian School 2006 (eds Rozanov, A. Y., Lopatin, A. V. & Parkhaev, P. Y.), pp. 5972. Moscow: Palaeontological Institute.Google Scholar
Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L. & Freeman, K. H. 2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences 107, 5738.CrossRefGoogle ScholarPubMed
Dong, Z. 1979. Cretaceous dinosaurs of Huanan (South China). In Mesozoic–Cenozoic Red Beds of Huanan (eds Cheng, J. & Qu, Z.), pp. 342–50. Beijing: Science Press (in Chinese).Google Scholar
Dong, Z. 1992. Dinosaurian Faunas of China. Beijing & Berlin: China Ocean Press & Springer-Verlag, 188 pp.Google Scholar
Dong, Z. 1993. Early Cretaceous dinosaur faunas in China: an introduction. Canadian Journal of Earth Sciences 30, 2096–100.CrossRefGoogle Scholar
Fernandez, V., Claude, J., Escarguel, G., Buffetaut, E. & Suteethorn, V. 2009. Biogeographical affinities of Jurassic and Cretaceous continental vertebrate assemblages from Southeast Asia. In Late Palaeozoic and Mesozoic Continental Ecosystems of Asia (eds Buffetaut, E., Cuny, G., Le Loeuff, J. & Suteethorn, V.), pp. 285300. Geological Society, London, Special Publication no. 315.Google Scholar
Gibson, S. Z. 2015. Evidence of a specialized feeding niche in a Late Triassic ray-finned fish: evolution of multidenticulate teeth and benthic scraping in †Hemicalypterus . The Science of Nature: Naturwissenschaften 102, 10. doi: 10.1007/s00114-015-1262-y.CrossRefGoogle Scholar
Guangxi Bureau of Geology and Mineral Resources. 1985. Regional Geology of Guangxi Zhuang Autonomous Region. Beijing: Geological Publishing House.Google Scholar
Hasegawa, Y., Buffetaut, E., Manabe, M. & Takakuwa, Y. 2003. A possible spinosaurid tooth from the Sebayashi Formation (lower Cretaceous), Gunma, Japan . Bulletin of the Gunma Museum of Natural History 7, 15.Google Scholar
Hasegawa, Y., Tanaka, G., Takakuwa, Y. & Koike, S. 2010. Fine sculptures on a tooth of Spinosaurus (Dinosauria, Theropoda) from Morocco. Bulletin of the Gunma Museum of Natural History 14, 1120.Google Scholar
Hoffet, J. H. 1944. Description des ossements les plus caractéristiques appartenant à des Avipelviens du Sénonien du Bas-Laos. Bulletin du Conseil des Recherches Scientifiques de l'Indochine 1944, 179–86.Google Scholar
Holtz, T. R., Molnar, R. E. & Currie, P. J. 2004. Basal Tetanurae. In The Dinosauria, 2nd edition (eds Weishampel, D. B., Dodson, P. & Osmólska, H.), pp. 71110. Berkeley: University of California Press.CrossRefGoogle Scholar
Hou, L., Yeh, H. & Zhao, X. 1975. Fossil reptiles from Fusui, Kwangshi. Vertebrata Palasiatica 13, 2333.Google Scholar
Klug, S. & Kriwet, J. 2013. An offshore fish assemblage (Elasmobranchii, Actinopterygii) from the Late Jurassic of NE Spain. Paläontologische Zeitschrift 87, 235–57.CrossRefGoogle Scholar
Koch, P. L., Tuross, N. & Fogel, M. L. 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24, 417–29.CrossRefGoogle Scholar
Kohn, M. J. 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proceedings of the National Academy of Sciences 107, 19691–5.CrossRefGoogle ScholarPubMed
Kuznetsov, V. V. 1976. Freshwater turtles from the Senonian deposits of northeastern Pre-Aralia. Paleontologicheskii Zhurnal 1976, 125–7.Google Scholar
Lapparent de Broin de, F. 2004. A new Shachemydinae (Chelonii, Cryptodira) from the Lower Cretaceous of Laos: preliminary data. Comptes Rendus Palevol 3, 387–96.CrossRefGoogle Scholar
Lauprasert, K., Laojumpon, C., Saenphala, W., Cuny, G., Thirakhupt, K. & Suteethorn, V. 2011. Atoposaurid crocodyliforms from the Khorat Group of Thailand: first record of Theriosuchus from Southeast Asia. Paläontologische Zeitschrift 85, 3747.CrossRefGoogle Scholar
Lécuyer, C. 2004. Oxygen isotope analysis of phosphate. Handbook of Stable Isotope Analytical Techniques (ed. Groot, P. A. De), pp. 482–96. Amsterdam: Elsevier.CrossRefGoogle Scholar
, J., Xu, L., Jiang, X., Jia, S., Li, M., Yuan, C., Zhang, X. & Ji, Q. 2009. A preliminary report on the new dinosaurian fauna from the Cretaceous of the Ruyang Basin, Henan Province of central China. Journal of the Paleontological Society of Korea 25, 4356.Google Scholar
Lucas, S. G. 2006. The Psittacosaurus biochron, Early Cretaceous of Asia. Cretaceous Research 27, 189–98.CrossRefGoogle Scholar
Metcalfe, I. 2009. Late Palaeozoic and Mesozoic tectonic and paleogeographical evolution of SE Asia. In Late Palaeozoic and Mesozoic Continental Ecosystems of Southeast Asia (eds Buffetaut, E., Cuny, G., Le Loeuff, J. & Suteethorn, V.), pp. 723. Geological Society, London, Special Publication no. 315.Google Scholar
Mo, J., Huang, C. & Xie, S. 2013. A review of dinosaur fossils from Guangxi. Natural Heritage and Museum Studies 2, 1844 (in Chinese).Google Scholar
Mo, J., Huang, C., Xie, S. & Buffetaut, E. 2014 a. A megatheropod tooth from the Early Cretaceous of Fusui, Guangxi, southern China. Acta Geologica Sinica, 88, 612.CrossRefGoogle Scholar
Mo, J., Wang, W., Huang, Z., Huang, X. & Xu, X. 2006. A basal titanosauriform from the Early Cretaceous of Guangxi, China. Acta Geologica Sinica 80, 486–9.Google Scholar
Mo, J., Xu, X. & Buffetaut, E. 2010. A new eusauropod dinosaur from the Lower Cretaceous of Guangxi Province, southern China. Acta Geologica Sinica 84, 1328–35.Google Scholar
Mo, J., Zhou, F., Li, G., Huang, Z. & Cao, C. 2014 b. A new Carcharodontosauria (Theropoda) from the Early Cretaceous of Guangxi, southern China. Acta Geologica Sinica 88, 1051–9.CrossRefGoogle Scholar
Monsch, K. A. 1998. Miocene fish faunas from the northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogeography, Palaeoclimatology, Palaeoecology 143, 3150.CrossRefGoogle Scholar
Murray, A. M. & Thewissen, J. G. M. 2008. Eocene actinopterygian fishes from Pakistan, with the description of a new genus and species of channid (channiformes). Journal of Vertebrate Paleontology 28, 4152.CrossRefGoogle Scholar
Nessov, L. A. & Krasovskaya, T. B. 1984. Transformations in the composition of turtle assemblages in the Cretaceous of Middle Asia. Vestnik Leningradskogo Universiteta 3, 1525.Google Scholar
Osborn, H. F. 1924. Sauropoda and Theropoda of the Lower Cretaceous of Mongolia. American Museum Novitates 128, 17.Google Scholar
Prasad, G. V. R. & Sahni, A. 1987. Coastal-plain microvertebrate assemblage from the terminal Cretaceous of Asifabad, Peninsular India. Journal of the Palaeontological Society of India 32, 519.Google Scholar
Racey, A. & Goodall, J. G. S. 2009. Palynology and stratigraphy of the Mesozoic Khorat Group red bed sequences from Thailand. In Late Palaeozoic and Mesozoic Continental Ecosystems of Southeast Asia (eds Buffetaut, E., Cuny, G., Le Loeuff, J. & Suteethorn, V.), pp. 6983. Geological Society, London, Special Publication no. 315.Google Scholar
Shibata, M., Jintasakul, P. & Azuma, Y. 2011. A new iguanodontian dinosaur from the Lower Cretaceous Khok Kruat Formation; Nakhon Ratchasima in northeastern Thailand. Acta Geologica Sinica 85, 969–76.CrossRefGoogle Scholar
Spoetl, C. & Vennemann, T. W. 2003. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Communications in Mass Spectrometry 17, 1004–6.CrossRefGoogle Scholar
Stromer, E. & Weiler, W. 1930. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. VI. Beschreibung von Wirbeltier-Resten aus dem nubischen Sandstein Oberägyptens und aus ägyptischen Phosphaten nebst Bemerkungen über die Geologie der Umgegend von Mahamîd in Oberägypten. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Abteilung, Neue Folge 7, 142.Google Scholar
Suteethorn, S., Le Loeuff, J., Buffetaut, E. & Suteethorn, V. 2010. Description of topotypes of Phuwiangosaurus sirindhornae, a sauropod from the Sao Khua Formation (Early Cretaceous) of Thailand, and their phylogenetic implications. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 256, 109–21.CrossRefGoogle Scholar
Suteethorn, S., Le Loeuff, J., Buffetaut, E., Suteethorn, V., Talubmook, C. & Chonglakmani, C. 2009. A new skeleton of Phuwiangosaurus sirindhornae (Dinosauria, Sauropoda) from Northeastern Thailand. In Late Palaeozoic and Mesozoic Continental Ecosystems of Southeast Asia (eds Buffetaut, E., Cuny, G., Le Loeuff, J. & Suteethorn, V.), pp. 189215. Geological Society, London, Special Publication no. 315.Google Scholar
Tabaste, N. 1963. Etudes de restes de poissons du Crétacé saharien. Mémoires de l'Institut Français d'Afrique Noire 68, 475–85.Google Scholar
Thies, D. & Mudroch, A. 1996. Actinopterygian teeth from the Late Jurassic (Kimmeridgian) of N. Germany. In Mesozoic Fishes – Systematics and Paleoecology (ed. Arratia, G. V.), pp. 105–14. München: Verlag Dr Friedrich Pfeil.Google Scholar
Tong, H., Buffetaut, E. & Suteethorn, V. 2006. Isanemys, a new adocid turtle from the Sao Khua Formation (Early Cretaceous) of the Khorat Plateau, northeastern Thailand. In Fossil Turtle Research, Vol. 1 (eds I. Danilov & J. F. Parham). Russian Journal of Herpetology, 13, 128–37.Google Scholar
Tong, H., Buffetaut, E., Suteethorn, V. & Srisuk, P. 2004. First carettochelyid turtle from the Lower Cretaceous of Thailand. Abstract. In 2nd EAVP Meeting (eds Ostal, O., Gregorova, R. & Ivanov, M.). Brno: Moravian Museum, 44 pp.Google Scholar
Tong, H., Claude, J., Suteethorn, V., Naksri, W. & Buffetaut, E. 2009. Turtle assemblages of the Khorat Group (Late Jurassic-Early Cretacous) of NE Thailand and their palaeobiogeographical significance. In Late Palaeozoic and Mesozoic Continental Ecosystems of Southeast Asia (eds Buffetaut, E., Cuny, G., Le Loeuff, J. & Suteethorn, V.), pp. 141–52. Geological Society, London, Special Publication no. 315.Google Scholar
Tong, H., Suteethorn, V., Claude, J., Buffetaut, E. & Jintasakul, P. 2005. The turtle fauna from the Khok Kruat Formation (Early Cretaceous) of Thailand. In Proceedings of the International Conference on Geology, Geotechnology and Mineral Resources of Indochina (GEOINDO 2005) (eds Wannakao, L., Youngme, W., Srisuk, K. & Lertsirivorakul, R.), pp. 610–4. Khon Kaen: Khon Kaen University.Google Scholar
Tumpeesuwan, S., Sato, Y. & Nakhapadungrat, S. 2010. A new species of Pseudohyria (Matsumotoina) (Bivalvia: Trigonioidoidea) from the Early Cretaceous Sao Khua Formation, Khorat Group, northeastern Thailand. Tropical Natural History 10, 93106.Google Scholar
Tütken, T. 2011. The diet of sauropod sinosaurs: implications from carbon isotope analysis of teeth, bones, and plants. In Biology of the Sauropod Dinosaurs: Understanding the Life of Giants (eds Klein, N., Remes, K. & Sander, M.), pp. 5779. Bloomington: Indiana University Press.Google Scholar
Upchurch, P., Barrett, P. M. & Dodson, P. 2004. Sauropoda. In The Dinosauria. Second edition (eds Weishampel, D.B., Dodson, P. & Osmólska, H.), pp. 259324. Berkeley: University of California Press.CrossRefGoogle Scholar
Vrielynck, B. & Bouysse, P. 2001. Le visage changeant de la Pangée et la mobilité des continents au cours des derniers 250 millions d'années en 10 cartes. Paris: Commission de la Carte Géologique du Monde. 10 plates.Google Scholar
Weiler, W. 1935. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. II. Wirbeltierreste der Baharîje-Stufe (unterstes Cenoman). Neue Untersuchungen an den Fischresten. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Abteilung, Neue Folge 32, 157.Google Scholar
Weishampel, D. B., Barrett, P. M., Coria, R. A., Le Loeuff, J., Xu, X., Zhao, X., Sahni, A., Gomani, E. M. P. & Noto, C. R. 2004. Dinosaur distribution. In The Dinosauria, 2nd edition (eds Weishampel, D. B., Dodson, P. & Osmólska, H.), pp. 517606. Berkeley: University of California Press.CrossRefGoogle Scholar
White, E. I. 1934. Fossil fishes of Sokoto Province. Bulletin of the Geological Survey of Nigeria 14, 178.Google Scholar
Xu, B., Grove, M., Wang, C., Zhang, L. & Liu, S. 2000. 40Ar/39Ar thermochronology from the northwestern Dabie Shan: constraints on the evolution of Qinling–Dabie orogenic belt, east-central China. Tectonophysics 322, 279301.CrossRefGoogle Scholar