Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T08:00:07.243Z Has data issue: false hasContentIssue false

Diopsidites from a Neoproterozoic–Cambrian suture in southern India

Published online by Cambridge University Press:  04 March 2010

M. SANTOSH*
Affiliation:
Department of Natural Environmental Science, Faculty of Science, Kochi University, Akebono-cho 2-5-1, Kochi 780-8520, Japan Department of Earth and Atmospheric Sciences, Center for Environmental Sciences, Saint Louis University, St. Louis MO 63108, USA
V. J. RAJESH
Affiliation:
Department of Earth Sciences, Faculty of Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
T. TSUNOGAE
Affiliation:
Graduate School of Life and Environmental Sciences (Earth Evolution Sciences), University of Tsukuba, Ibaraki 305-8572, Japan
S. ARAI
Affiliation:
Department of Earth Sciences, Faculty of Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
*
*Author for correspondence: [email protected]

Abstract

We report the occurrence and characteristics of diopsidite dykes and veins from the Palghat-Cauvery Suture Zone (PCSZ) marking the boundary between the Archaean Dharwar craton to the north and the Proterozoic Madurai Block to the south, which is considered as a trace of the Cambrian Gondwana suture zone in southern India. The diopsidites are composed predominantly of coarse crystals of diopside [Mg no. (100 Mg/(Mg+Fetot)) up to 89] surrounded by retrograde calcic amphibole, plagioclase and phlogopite with accessory titanite and calcite. The major, trace and rare earth element characteristics of the diopside crystals suggest their formation in a subduction zone setting. We correlate the petrogenesis of the diopsidites with the tectonics associated with the subduction and closure of the Neoproterozoic Mozambique Ocean prior to the final collisional assembly of the Gondwana supercontinent in Cambrian.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arai, S., Tamura, A., Ishimaru, S., Kadoshima, K., Lee, Y.-L. & Hisada, K.-I. 2008. Petrology of the Yugu peridotites in the Gyeonggi Massif, South Korea: Implications for its origin and hydration process. Island Arc 17, 485501.CrossRefGoogle Scholar
Bach, W. & Klein, F. 2008. Tales and facts about rodingite and diopsidite in oceanic mantle sections. Geochimica et Cosmochimica Acta 72, A41.Google Scholar
Bach, W. & Klein, F. 2009. The petrology of seafloor rodingites: Insights from geochemical reaction path modeling. Lithos 112, 103–17.CrossRefGoogle Scholar
Chetty, T. R. K. & Bhaskar Rao, Y. J. 2006. The Cauvery Shear Zone, Southern Granulite Terrain, India: A crustal-scale flower structure. Gondwana Research 10, 7785.CrossRefGoogle Scholar
Chetty, T. R. K., Fitzsimons, I., Brown, L., Dimri, V. P. & Santosh, M. 2006. Crustal structure and tectonic evolution of Southern Granulite Terrain, India: Introduction. Gondwana Research 10, 35.CrossRefGoogle Scholar
Clark, C., Collins, A. S., Timms, N. E., Kinny, P. D., Chetty, T. R. K. & Santosh, M. 2009. SHRIMP U–Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India. Gondwana Research 16, 2736.CrossRefGoogle Scholar
Collins, A. S., Clark, C., Sajeev, K., Santosh, M., Kelsey, D. E. & Hand, M. 2007. Passage through India: The Mozambique ocean suture, high-pressure granulites and the Palghat-Cauvery Shear System. Terra Nova 19, 141–7.CrossRefGoogle Scholar
Collins, A. S. & Windley, B. F. 2002. The tectonic evolution of central and northern Madagascar and its place in the final assembly of Gondwana. Journal of Geology 110, 325–40.CrossRefGoogle Scholar
Dantas, C., Ceuleneer, G., Grégoire, M., Python, M., Freydier, R., Warren, J. & Dick, H. J. B. 2007. Pyroxenites from the Southwest Indian Ridge, 9–16°E: Cumulates from Incremental Melt Fractions Produced at the Top of a Cold Melting Regime. Journal of Petrology 48, 647–60.CrossRefGoogle Scholar
Dilek, Y., Furnes, H. & Shallo, M. 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos 100, 174209.CrossRefGoogle Scholar
Dorais, M. J. & Tubrett, M. 2008. Identification of a subduction zone component in the Higganum dike, Central Atlantic Magmatic Province: A LA-ICPMS study of clinopyroxene with implications for flood basalt petrogenesis. Geochemistry Geophysics Geosystems 9, Q10005, doi:10.1029/2008GC002079.CrossRefGoogle Scholar
Elthon, D., Stewart, M. & Ross, D. K. 1992. Compositional trends of minerals in oceanic cumulates. Journal of Geophysical Research 97, 15189–99.CrossRefGoogle Scholar
Ernewein, M., Pfumio, C. & Whitechurch, H. 1988. The death of an accretion zone as evidenced by the magmatic history of the Sumail ophiolite (Oman). Tectonophysics 151, 247–74.CrossRefGoogle Scholar
Frost, B. R. 1975. Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, Central Cascades, Washington. Journal of Petrology 16, 272313.CrossRefGoogle Scholar
Gaggero, L., Spadea, P., Cortesgno, L., Savelieva, G. N. & Pertsev, A. N. 1997. Geochemical investigation of the igneous rocks from the Nurali ophiolite mélange zone, southern Urals. Tectonophysics 276, 139–61.CrossRefGoogle Scholar
Grégoire, M., McInnes, B. I. A. & O'Reilly, S. Y. 2001. Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea. Part 2: Trace element characteristics of slab-derived fluids. Lithos 59, 91108.CrossRefGoogle Scholar
Grégoire, M., Moine, B. N., O'Reilly, S. Y., Cottin, J. Y. & Giret, A. 2000. Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate- and carbonate-rich melts (Kerguelen Islands, Indian Ocean). Journal of Petrology 41, 477509.CrossRefGoogle Scholar
GSI (Geological Survey of India). 1995. Geological and mineral map of Tamil Nadu and Pondicherry. Geological Survey of India, Calcutta.Google Scholar
Harris, N. B. W., Santosh, M. & Taylor, P. N. 1994. Crustal evolution in South India: constraints from Nd isotopes. Journal of Geology 102, 139–50.CrossRefGoogle Scholar
Harte, B., Hunter, R. H. & Kinny, P. D. 1993. Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism. Philosophical Transactions of the Royal Society of London A342, 121.Google Scholar
Hodges, F. N. & Papike, J. J. 1976. DSDP site 334: magmatic cumulates from oceanic layer 3. Journal of Geophysical Research 81, 4135–51.CrossRefGoogle Scholar
Ishida, Y., Morishita, T., Arai, S. & Shirasaka, M. 2004. Simultaneous in-situ multi-element analysis of minerals on thin section using LA–ICP–MS. The Science Reports of Kanazawa University 48, 3142.Google Scholar
Ishiwatari, A., Yanagida, Y., Li, Y.-B., Ishii, T., Haraguchi, S., Koizumi, K., Ichiyama, Y. & Umeka, M. 2006. Dredge petrology of the boninite- and adakite-bearing Hahajima Seamount of the Ogasawara (Bonin) forearc: An ophiolite or a serpentinite seamount? Island Arc 15, 102–18.CrossRefGoogle Scholar
Jan, Q. M. & Howie, R. A. 1981. The mineralogy and geochemistry of the metamorphosed basic and ultrabasic rocks of the Jijal Complex, Kohistan, NW Pakistan. Journal of Petrology 22, 85126.CrossRefGoogle Scholar
Kelemen, P. B., Shimizu, N. & Salters, V. J. M. 1995. Extraction of midocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375, 747–53.CrossRefGoogle Scholar
Kempton, P. D., Hawkesworth, C. J., Lopez-Escobar, L., Pearson, D. G. & Ware, A. J. 1999. Spinel ± garnet lherzolite xenoliths from Pali Aike, Part 2: trace element and isotopic evidence on the evolution of lithospheric mantle beneath southern Patagonia. In The J. B. Dawson Volume, Proceedings of the 7th International Kimberlite Conference (eds Gurney, J. J., Gurney, J. L., Pascoe, M. D. & Richardson, S. H.), pp. 415–18. Cape Town: Red Roof Design.Google Scholar
Kogiso, T., Tatsumi, Y. & Nakano, S. 1997. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of oceanic island basalts. Earth and Planetary Science Letters 148, 193206.CrossRefGoogle Scholar
Longerich, H. P., Jackson, S. E. & Gunther, D. 1996. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry 11, 899904.CrossRefGoogle Scholar
Maury, R. C., Defant, M. J. & Joron, J.-C. 1992. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature 360, 661–3.CrossRefGoogle Scholar
McCollom, T. M. & Shock, E. L. 1998. Fluid–rock interactions in the lower oceanic crust: thermodynamic models of hydrothermal alteration. Journal of Geophysical Research 103, 547–75.CrossRefGoogle Scholar
Morishita, T., Ishida, Y., Arai, S. & Shirasaka, M. 2004. Determination of multiple trace element compositions in thin (30 μm) layers of NIST SRM 614 and 616 using laser ablation–inductively coupled plasma–mass spectrometry. Geostandards and Geoanalytical Research 29, 107–22.CrossRefGoogle Scholar
Nozaka, T. 2005. Metamorphic history of serpentinite mylonites from the Happo ultramafic complex, central Japan. Journal of Metamorphic Geology 23, 711–23.CrossRefGoogle Scholar
Ohyama, H., Tsunogae, T. & Santosh, M. 2008. CO2-rich fluid inclusions in staurolite and associated minerals in a high-pressure ultrahigh-temperature granulite from the Gondwana suture in southern India. Lithos 101, 177–90.CrossRefGoogle Scholar
Parkinson, I. J., Pearce, J. A., Thirlwall, M. F., Johnson, K. T. M. & Ingram, G. 1992. Trace element geochemistry of peridotites from the Izu–Bonin–Mariana forearc. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 125 (eds Fryer, P., Pearce, J. A. & Stokking, L. B.), pp. 487506. College Station, Texas.Google Scholar
Parlak, O., Höck, V. & Delaloye, M. 2000. Supra-subduction zone origin of the Pozantı–Karsantı ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. In Tectonics and Magmatism in Turkey and the Surrounding Area (eds Bozkurt, E., Winchester, J. A. & Piper, J. D. A.), pp. 219–34. Geological Society of London, Special Publication no. 173.Google Scholar
Parlak, O., Höck, V. & Delaloye, M. 2002. The supra-subduction zone Pozanti–Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos 65, 205–24.CrossRefGoogle Scholar
Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R. & Chenery, S. P. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter 21, 115–44.CrossRefGoogle Scholar
Pedrosa-Soares, A. C., Vidal, P., Leonardos, O. H. & Neves, B. B. N. 1998. Neoproterozoic oceanic remnants in eastern Brazil: Further evidence and refutation of an exclusively ensialic evolution for the Araçuaí–West Congo orogen. Geology 26, 519–22.2.3.CO;2>CrossRefGoogle Scholar
Python, M. & Arai, S. 2009. Interactions between high-T hydrothermal fluids and mantle lithologies: evidence from the Oman fossilised spreading centre. Geophysical Research Abstracts 11, EGU200912245.Google Scholar
Python, M. & Ceuleneer, G. 2003. Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite. Geochemistry Geophysics Geosystems 4 (7), 8612.CrossRefGoogle Scholar
Python, M., Ceuleneer, G., Ishida, Y. & Arai, S. 2007 a. Trace element heterogeneity in hydrothermal diopside: evidence for Ti depletion and Sr-Eu-LREE enrichment during hydrothermal metamorphism of mantle harzburgite. Journal of Mineralogical and Petrological Sciences 102, 143–9.CrossRefGoogle Scholar
Python, M., Ceuleneer, G., Ishida, Y., Barrat, J.-A. & Arai, S. 2007 b. Oman diopsidites: a new lithology diagnostic of very high temperature hydrothermal circulation in mantle peridotite below oceanic spreading centres. Earth and Planetary Science Letters 255, 289309.CrossRefGoogle Scholar
Quanru, G., Guitang, P., Zheng, L., Chen, Z., Fisher, R. D., Sun, Z., Ou, C., Dong, H., Wang, X., Li, S., Lou, X. & Fu, H. 2006. The Eastern Himalayan syntaxis: major tectonic domains, ophiolitic mélanges and geologic evolution. Journal of Asian Earth Sciences 27, 265–85.CrossRefGoogle Scholar
Rice, J. M. 1983. Metamorphism of rodingites: Part I. Phase relations in a portion of the system CaO–MgO–Al2O3–SiO2–CO2–H2O. American Journal of Science 283A, 121–50.Google Scholar
Sablukova, L. I. & Sablukov, S. M. 2008. Clinopyroxene–phlogopite rock xenoliths: geochemistry, isotope, age, origin and relationship to Grib pipe kimberlites (Arkhangelsk province). 9th International Kimberlite Conference Extended Abstract 9IKC-A-00165.Google Scholar
Santosh, M., Collins, A. S., Tamashiro, I., Koshimoto, S., Tsutsumi, Y. & Yokoyama, K. 2006. The timing of ultrahigh-temperature metamorphism in Southern India: U–Th–Pb electron microprobe ages from zircon and monazite in sapphirine-bearing granulites. Gondwana Research 10, 128–55.CrossRefGoogle Scholar
Santosh, M., Maruyama, S. & Yamamoto, S. 2009. The making and breaking of supercontinents: Some speculations based on superplumes, superdownwelling and the role of tectosphere. Gondwana Research 15, 324–41.CrossRefGoogle Scholar
Santosh, M., Maruyama, S. & Sato, K. 2009. Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India? Gondwana Research 16, 321–41.CrossRefGoogle Scholar
Santosh, M., Tsunogae, T., Shimizu, H. & Dubessy, J. 2010. Fluid characteristics of retrogressed eclogites and mafic granulites from the Cambrian Gondwana suture zone in southern India. Contributions to Mineralogy and Petrology 159, 349–69.CrossRefGoogle Scholar
Santosh, M. & Sajeev, K. 2006. Anticlockwise evolution of ultrahigh-temperature granulites within continental collision zone in southern India. Lithos 92, 447–64.CrossRefGoogle Scholar
Santosh, M., Tsunogae, T. & Koshimoto, S. 2004. First report of sapphirine-bearing rocks from the Palghat-Cauvery Shear Zone System, Southern India. Gondwana Research 7, 620–6.CrossRefGoogle Scholar
Shimpo, M., Tsunogae, T. & Santosh, M. 2006. First report of garnet-corundum rocks from Southern India: implications for prograde high-pressure (eclogite-facies?) metamorphism. Earth and Planetary Science Letters 242, 111–29.CrossRefGoogle Scholar
Sun, S.-S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tamura, A. & Arai, S. 2006. Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos 90, 4356.CrossRefGoogle Scholar
Tatsumi, Y., Hamilton, D. L. & Nesbitt, R. W. 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research 29, 293303.CrossRefGoogle Scholar
Tsunogae, T., Santosh, M., Ohyama, H. & Sato, K. 2008. High-pressure and ultrahigh-temperature metamorphism at Komateri, northern Madurai Block, southern India. Journal of Asian Earth Sciences 33, 395413.CrossRefGoogle Scholar
Van Achterbergh, E., Griffin, W. L. & Stiefenhofer, J. 2001. Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes. Contributions to Mineralogy and Petrology 141, 397414.CrossRefGoogle Scholar
Yang, J. J. 2006. Ca-rich garnet–clinopyroxene rocks at Hujialin in the Su-Lu terrane (Eastern China): Deeply subducted arc cumulates? Journal of Petrology 47, 965–90.CrossRefGoogle Scholar
Zhang, H. F., Ying, J. F. & Shimoda, G. 2007. Importance of melt circulation and crust–mantle interaction in the lithospheric evolution beneath the North China Craton: evidence from Mesozoic basalt-borne clinopyroxene xenocrysts and pyroxenite xenoliths. Lithos 96, 6789.CrossRefGoogle Scholar
Supplementary material: Image

Santosh Supplementary Material

Colour Fig 1.jpg

Download Santosh Supplementary Material(Image)
Image 666.4 KB
Supplementary material: Image

Santosh Supplementary Material

Colour Fig 2.jpg

Download Santosh Supplementary Material(Image)
Image 861.3 KB
Supplementary material: Image

Santosh Supplementary Material

Colour Fig 3.jpg

Download Santosh Supplementary Material(Image)
Image 857.9 KB