Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T11:20:28.904Z Has data issue: false hasContentIssue false

Detrital zircon geochronology and heavy mineral analysis as complementary provenance tools in the presence of extensive weathering, reworking and recycling: the Neogene of the southern North Sea Basin

Published online by Cambridge University Press:  30 March 2021

Jasper Verhaegen*
Affiliation:
Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001Leuven, Belgium Department of Environment of the Flemish Government, Planning Bureau for the Environment and Spatial Development (VPO), Koning Albert II-laan 20, 1000Brussels, Belgium
Hilmar von Eynatten
Affiliation:
Geowissenschaftliches Zentrum der Georg-August-Universität Göttingen, Abteilung Sedimentologie/Umweltgeologie, Goldschmidtstrasse 3, D-37077Göttingen, Germany
István Dunkl
Affiliation:
Geowissenschaftliches Zentrum der Georg-August-Universität Göttingen, Abteilung Sedimentologie/Umweltgeologie, Goldschmidtstrasse 3, D-37077Göttingen, Germany
Gert Jan Weltje
Affiliation:
Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001Leuven, Belgium
*
Author for correspondence: Jasper Verhaegen, Email: [email protected]

Abstract

Heavy mineral analysis is a long-standing and valuable tool for sedimentary provenance analysis. Many studies have indicated that heavy mineral data can also be significantly affected by hydraulic sorting, weathering and reworking or recycling, leading to incomplete or erroneous provenance interpretations if they are used in isolation. By combining zircon U–Pb geochronology with heavy mineral data for the southern North Sea Basin, this study shows that the classic model of sediment mixing between a northern and a southern source throughout the Neogene is more complex. In contrast to the strongly variable heavy mineral composition, the zircon U–Pb age spectra are mostly constant for the studied samples. This provides a strong indication that most zircons had an initial similar northern source, yet the sediment has undergone intense chemical weathering on top of the Brabant Massif and Ardennes in the south. This weathered sediment was later recycled into the southern North Sea Basin through local rivers and the Meuse, leading to a weathered southern heavy mineral signature and a fresh northern heavy mineral signature, yet exhibiting a constant zircon U–Pb age signature. Thus, this study highlights the necessity of combining multiple provenance proxies to correctly account for weathering, reworking and recycling.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adriaens, R (2015) Neogene and Quaternary clay minerals in the southern North Sea. Ph.D. thesis, KU Leuven, Belgium. Published thesis.Google Scholar
Augustsson, C, Voigt, T, Bernhart, K, Kreißler, M, Gaupp, R, Gärtner, A, Hofmann, M and Linnemann, U (2018) Zircon size-age sorting and source-area effect: the German Triassic Buntsandstein Group. Sedimentary Geology 375, 218–31.CrossRefGoogle Scholar
Bahlburg, H, Vervoort, JD, Du Frane, SA, Bock, B, Augustsson, C and Reimann, C (2009) Timing of crust formation and recycling in accretionary orogens: insights learned from the western margin of South America. Earth-Science Reviews 97, 227–53.CrossRefGoogle Scholar
Burger, AW (1987) Heavy-mineral assemblages in Neogene marine and near-coastal deposits of the south-eastern Netherlands. Mededelingen Werkgroep Tertiaire en Kwartaire Geologie 24, 1530.Google Scholar
Cox, MF and Cox, MAA (2001) Multidimensional Scaling. London: Chapman and Hall/CRC.Google Scholar
Deckers, J and Louwye, S (2019) Late Miocene increase in sediment accommodation rates in the southern North Sea Basin. Geological Journal 55, 728–36.Google Scholar
De Coninck, J (1990) Ypresian organic-walled phytoplankton in the Belgian Basin and adjacent areas. Bulletin de la Société belge de géologie 97, 287319.Google Scholar
De Man, E, Van Simaeys, S, Vandenberghe, N, Harris, WB and Wampler, JM (2010) On the nature and chronostratigraphic position of the Rupelian and Chattian stratotypes in the southern North Sea basin. Episodes 33, 313.CrossRefGoogle Scholar
De Meuter, F and Laga, P (1976) Lithostratigraphy and biostratigraphy based on benthonic foraminifera of the Neogene deposits of Northern Belgium. Bulletin de la Société belge de géologie 85, 133–52.Google Scholar
Demoulin, A (ed.) (1995) L’Ardenne, essai de géographie physique. Liège: Publication du Département de Géographie physique et Quaternaire de l’Université de Liège, 238 pp.Google Scholar
Demoulin, A, Barbier, F, Dekoninck, A, Verhaert, M, Ruffet, G, Dupuis, C and Yans, J (2018) Erosion surfaces in the Ardenne–Oesling and their associated kaolinic weathering mantle. In Landscapes and Landforms of Belgium and Luxembourg (ed. Demoulin, A), pp. 6384, Cham: Springer International Publishing AG.CrossRefGoogle Scholar
Doornenbal, H and Stevenson, A (eds) (2010) Petroleum Geological Atlas of the Southern Permian Basin Area. Houten: EAGE Publications.Google Scholar
Dunkl, I, Mikes, T, Simon, K and Von Eynatten, H (2008) Brief introduction to the Windows program Pepita: data visualization, and reduction, outlier rejection, calculation of trace element ratios and concentrations from LA-ICP-MS data. In Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues (ed. Sylvester, P), pp. 334–40. Mineralogical Association of Canada, Short Course no. 40.Google Scholar
Edelman, CH and Doeglas, DJ (1933) Bijdrage tot de petrologie van het Nederlandsche Tertiair. Verhandelingen van het Geologisch-mijnbouwkundig genootschap voor Nederland en koloniën. Geologische Serie 10, 138.Google Scholar
Frei, D and Gerdes, A (2009) Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chemical Geology 261, 261–70.CrossRefGoogle Scholar
Garzanti, E (2017) The maturity myth in sedimentology and provenance analysis. Journal of Sedimentary Research 87, 353–65.CrossRefGoogle Scholar
Garzanti, E and Andò, S (2007) Plate tectonics and heavy mineral suites of modern sands. In Heavy Minerals in Use (eds Mange, MA and Wright, DT), pp. 741–63. Developments in Sedimentology 58. Amsterdam: Elsevier Science.CrossRefGoogle Scholar
Garzanti, E, Andò, S and Vezzoli, G (2008) Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters 273, 138–51.CrossRefGoogle Scholar
Garzanti, E, Andò, S and Vezzoli, G (2009) Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters 277, 422–32.CrossRefGoogle Scholar
Garzanti, E, Dinis, P, Vermeesch, P, Andò, S, Hahn, A, Huvi, J, Limonta, M, Padoan, M, Resentini, A, Rittner, M and Vezzoli, G (2018) Sedimentary processes controlling ultralong cells of littoral transport: placer formation and termination of the Orange sand highway in southern Angola. Sedimentology 65, 431–60.CrossRefGoogle Scholar
Geets, S and De Breuck, W (1991) De zware-mineraleninhoud van Belgische mesozoïsche en cenozoïsche afzettingen. Natuurwetenschappelijk Tijdschrift 73, 337.Google Scholar
Grubbs, F (1969) Procedures for detecting outlying observations in samples. Technometrics 11, 121.CrossRefGoogle Scholar
Gullentops, F and Huyghebaert, L (1999) A profile through the Pliocene of Northern Kempen, Belgium. Aardkundige Mededelingen (Leuven University Press) 9, 191202.Google Scholar
Guo, Y, Yang, S, Li, C, Bi, L and Zhao, Y (2017) Sediment recycling and indication of weathering proxies. Acta Geochimica 36, 498501.CrossRefGoogle Scholar
Harangi, S, Lukács, R, Schmitt, AK, Dunkl, I, Molnár, K, Kiss, B, Seghedi, I, Novothny, Á and Molnár, M (2015) Constraints on the timing of Quaternary volcanism and duration of magma residence at Ciomadul volcano, east-central Europe, from combined U–Th/He and U–Th zircon geochronology. Journal of Volcanology and Geothermal Research 301, 6680.CrossRefGoogle Scholar
Jackson, S, Pearson, N, Griffin, W and Belousova, E (2004) The application of laser ablation-inductively coupled plasma mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.CrossRefGoogle Scholar
Johnson, SP, Kirkland, CL, Evans, NJ, McDonald, BJ and Cutten, HN (2018) The complexity of sediment recycling as revealed by common Pb isotopes in K-feldspar. Geoscience Frontiers 9, 1515–27.CrossRefGoogle Scholar
Kaufmann, B, Trapp, E, Mezger, K and Weddige, K (2005) Two new Emsian (Early Devonian) U–Pb zircon ages from volcanic rocks of the Rhenish Massif (Germany): implications for the Devonian time scale. Journal of the Geological Society, London 162, 363–71.CrossRefGoogle Scholar
Kearey, P (2001) Dictionary of Geology, 2nd ed. London: Penguin Books.Google Scholar
Kotthoff, U, Greenwood, DR, McCarthy, FMG, Müller-Navarra, K, Prader, S and Hesselbo, SP (2014) Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027). Climate of the Past 10, 1523–39.CrossRefGoogle Scholar
Krippner, A and Bahlburg, H (2013) Provenance of Pleistocene Rhine River Middle Terrace sands between the Swiss–German border and Cologne based on U–Pb detrital zircon ages. International Journal of Earth Sciences 102, 917–32.CrossRefGoogle Scholar
Laga, P, Louwye, S and Geets, S (2001) Paleogene and Neogene lithostratigraphic units (Belgium). Geologica Belgica 4, 135–52.CrossRefGoogle Scholar
Lawrence, RL, Cox, R, Mapes, RW and Coleman, DS (2011) Hydrodynamic fractionation of zircon age populations. Geological Society of America Bulletin 123, 295305.CrossRefGoogle Scholar
Linnemann, U, Herbosch, A, Liégeois, J-P, Pin, C, Gärtner, A and Hofmann, M (2012) The Cambrian to Devonian odyssey of the Brabant Massif within Avalonia: a review with new zircon ages, geochemistry, Sm–Nd isotopes, stratigraphy and palaeogeography. Earth-Science Reviews 112, 126–54.CrossRefGoogle Scholar
Louwye, S and Vandenberghe, N (2020) A reappraisal of the dinoflagellate cyst biostratigraphy of the upper Miocene in the Maaseik well 49W0220. Geologica Belgica 23. doi: 10.20341/gb.2020.013.Google Scholar
Ludwig, KR (2012) User’s Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no. 4, 70 pp.Google Scholar
Malusà, MG, Carter, A, Limoncelli, M, Villa, IM and Garzanti, E (2013) Bias in detrital zircon geochronology and thermochronometry. Chemical Geology 359, 90107.CrossRefGoogle Scholar
Malusà, MG and Garzanti, E (2019) The sedimentology of detrital thermochronology. In Fission-Track Thermochronology and its Application to Geology (eds Malusà, M and Fitzgerald, PG), pp. 123–43. Cham: Springer International Publishing.CrossRefGoogle Scholar
Malusà, MG, Resentini, A and Garzanti, E (2016) Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Research 31, 119.CrossRefGoogle Scholar
Mange, MA and Maurer, HFW (1992) Heavy Minerals in Colour. London: Chapman & Hall.CrossRefGoogle Scholar
Mange, A and Wright, DT (eds) (2007) Heavy Minerals in Use. Developments in Sedimentology 58. Amsterdam: Elsevier Science.Google Scholar
Miller, KG, Wright, JD and Fairbanks, RG (1991) Unlocking the icehouse: Oligocene–Miocene oxygen isotopes, eustacy, and margin erosion. Journal of Geophysical Research 96, 6829–48.CrossRefGoogle Scholar
Moecher, DP and Samson, SD (2006) Differential zircon fertility of source terranes and natural bias in the detrital zircon record: implications for sedimentary provenance analysis. Earth and Planetary Science Letters 247, 252–66.CrossRefGoogle Scholar
Mongelli, G, Critelli, S, Perri, F, Sonnino, M and Perrone, V (2006) Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani mountains, southern Italy. Geochemical Journal 40, 197209.CrossRefGoogle Scholar
Morton, AC and Hallsworth, C (1994) Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology 90, 241–56.CrossRefGoogle Scholar
Morton, AC and Hallsworth, CR (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology 124, 329.CrossRefGoogle Scholar
Morton, AC and Hallsworth, C (2007) Stability of detrital heavy minerals during burial diagenesis. In Heavy Minerals in Use (eds Mange, MA and Wright, DT), pp. 215–45. Developments in Sedimentology 58. Amsterdam: Elsevier Science.CrossRefGoogle Scholar
Mosbrugger, V, Utescher, T and Dilcher, DL (2005) Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences of the United States of America 102, 14964–9.CrossRefGoogle ScholarPubMed
Munsterman, DK, Ten Veen, JH, Menkovic, A, Deckers, J, Witmans, N, Verhaegen, J, Kerstholt-Boegehold, SJ, Van De Ven, T and Busschers, FS (2019) An updated and revised stratigraphic framework for the Miocene and earliest Pliocene strata of the Roer Valley Graben and adjacent blocks. Netherlands Journal of Geosciences 98, E8. doi: 10.1017/njg.2019.10 CrossRefGoogle Scholar
Olivarius, M, Rasmussen, ES, Siersma, V, Knudsen, C, Kokfelt, TF and Keulen, N (2014) Provenance signal variations caused by facies and tectonics: zircon age and heavy mineral evidence from Miocene sand in the north-eastern North Sea Basin. Marine and Petroleum Geology 49, 114.CrossRefGoogle Scholar
Olivarius, M, Rasmussen, ES, Siersma, V, Knudsen, C and Pedersen, GK (2011) Distinguishing fluvio-deltaic facies by bulk geochemistry and heavy minerals: an example from the Miocene of Denmark. Sedimentology 58, 1155–79.CrossRefGoogle Scholar
O’Sullivan, GJ, Chew, DM and Samson, SD (2016) Detecting magma-poor orogens in the detrital record. Geology 44, 871–4.CrossRefGoogle Scholar
Overeem, I, Weltje, GJ, Bishop-Kay, C and Kroonenberg, SB (2001) The Late Cenozoic Eridanos delta system in the Southern North Sea Basin: a climate signal in sediment supply. Basin Research 13, 293312.CrossRefGoogle Scholar
Paces, JB and Miller, JD (1993) Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights into physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research 98, 13997–4013.CrossRefGoogle Scholar
Parfenoff, A, Pomerol, C and Tourenq, J (1970) Les Minéraux en Grains: Methodes d’Étude et Determination. Paris: Masson.Google Scholar
Schärer, U, Berndt, J, Scherer, EE, Kooijman, E, Deutsch, A and Klostermann, J (2012) Major geological cycles substantiated by U–Pb ages and ϵHfi of detrital zircon grains from the Lower Rhine Basin. Chemical Geology 294–295, 6374.CrossRefGoogle Scholar
Sircombe, KN (2004) AgeDisplay: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Computers & Geosciences 30, 2131.CrossRefGoogle Scholar
Sissingh, W (2003) Tertiary paleogeographic and tectonostratigraphic evolution of the Rhenish Triple Junction. Palaeogeography, Palaeoclimatology, Palaeoecology 196, 229–63.CrossRefGoogle Scholar
Slagstad, T, Davidsen, B and Daly, JS (2011) Age and composition of crystalline basement rocks on the Norwegian continental margin: offshore extension and continuity of the Caledonian–Appalachian orogenic belt. Journal of the Geological Society, London 168, 1167–85.CrossRefGoogle Scholar
Sláma, J, Košler, J, Condon, DJ, Crowley, JL, Gerdes, A, Hanchar, JM, Horstwood, MSA, Morris, GA, Nasdala, L, Norberg, N, Schaltegger, U, Schoene, B, Tubrett, MN and Whitehouse, MJ (2008) Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.CrossRefGoogle Scholar
Tatzel, M, Dunkl, I and Von Eynatten, H (2017) Provenance of Palaeo-Rhine sediments from zircon thermochronology, geochemistry, U–Pb dating and heavy mineral assemblages. Basin Research 29, 396417.CrossRefGoogle Scholar
Tavernier, R (1943) Le Néogène de la Belgique. Bulletin de la Société belge de géologie 52, 734.Google Scholar
Van Adrichem Boogeart, HA and Kouwe, WFP (1997) Stratigraphic Nomenclature of the Netherlands. Mededelingen Rijks Geologische Dienst no. 50, 39 pp.Google Scholar
Van Andel, H (1950) Provenance, transport and deposition of Rhine sediment. Ph.D. thesis, Groningen University, H. Veenman & zonen, Wageningen, Netherlands. Published thesis.Google Scholar
Vandenberghe, N, De Craen, M and Wouters, L (2014a) The Boom Clay geology. From sedimentation to present-day occurrence. A review. Memoirs of the Geological Survey of Belgium 60, 76.Google Scholar
Vandenberghe, N, Harris, WB, Wampler, JM, Houthuys, R, Louwye, S, Adriaens, R, Vos, K, Lanckacker, T, Matthijs, J, Deckers, J, Verhaegen, J, Laga, P, Westerhoff, W and Munsterman, D (2014b) The implications of K–Ar glauconite dating of the Diest Formation on the paleogeography of the Upper Miocene in Belgium. Geologica Belgica 17, 161–74.Google Scholar
Vandenberghe, N, Laga, P, Steurbaut, E, Hardenbol, J and Vail, PR (1998) Tertiary sequence stratigraphy at the southern border of the North Sea Basin in Belgium. In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (eds de Graciansky, P-C, Hardenbol, J, Jacquin, T and Vail, PR), pp. 119–54. SEPM Special Publication no. 60.Google Scholar
Vandenberghe, N, Van Simaeys, S, Steurbaut, E, Jagt, JWM and Felder, PJ (2004) Stratigraphic architecture of the Upper Cretaceous and Cenozoic along the southern border of the North Sea Basin in Belgium. Netherlands. Journal of Geosciences 83, 155–71.Google Scholar
Van Vliet-Lanoë, B, Gosselin, G, Mansy, G-L, Bourdillon, C, Meurisse-Fort, M, Henriet, J-P, Le Roy, P and Trentesaux, A (2010) A renewed Cenozoic story of the Strait of Dover. Annales de la Société géologique du Nord 17, 5980.Google Scholar
Verbeek, JW, De Leeuw, CS, Parker, N and Wong, TE (2002) Characterisation and correlation of Tertiary seismostratigraphic units in the Roer Valley Graben. Netherlands. Journal of Geosciences 81, 159–66.Google Scholar
Verhaegen, J (2020) Stratigraphic discriminatory potential of heavy mineral analysis for the Neogene sediments of Belgium. Geologica Belgica 23, 379–98. doi: 10.20341/gb.2020.003.CrossRefGoogle Scholar
Verhaegen, J, Weltje, GJ and Munsterman, D (2019) Workflow for analysis of compositional data in sedimentary petrology: provenance changes in sedimentary basins from spatio-temporal variation in heavy-mineral assemblages. Geological Magazine 156, 1111–30.CrossRefGoogle Scholar
Vermeesch, P (2012) On the visualisation of detrital age distributions. Chemical Geology 312–313, 190–4.CrossRefGoogle Scholar
Vermeesch, P (2013) Multi-sample comparison of detrital age distributions. Chemical Geology 341, 140–6.CrossRefGoogle Scholar
Vermeesch, P, Resentini, A and Garzanti, E (2016) An R package for statistical provenance analysis. Sedimentary Geology 336, 1425.CrossRefGoogle Scholar
von Eynatten, H and Dunkl, I (2012) Assessing the sediment factory: the role of single grain analysis. Earth-Science Reviews 115, 97120.CrossRefGoogle Scholar
von Eynatten, H, Führing, P, Aschoff, M, Seest, E and Dunkl, I (2018) Provenance of sands from the SE North Sea: Scandinavian vs. Central European signals. In Working Group on Sediment Generation (WGSG) 2018, Trinity College Dublin, 27–29 June 2018, Programme and Abstracts, p. 76.Google Scholar
Von Hoegen, J, Kramm, U and Walter, R (1990) The Brabant Massif as part of Armorica/Gondwana: U–Pb isotopic evidence from detrital zircons. Tectonophysics 185, 3750.CrossRefGoogle Scholar
Wiedenbeck, M, Allé, P, Corfu, F, Griffin, WL, Meier, M, Oberli, F, Von Quadt, A, Roddick, JC and Spiegel, W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE-analyses. Geostandards Newsletters 19, 123.CrossRefGoogle Scholar
Young, FW and Hamer, RM (1987) Multidimensional Scaling: History, Theory and Applications. New York: Erlbaum.Google Scholar
Ziegler, PA (1992) European Cenozoic rift system. Tectonophysics 208, 91111.CrossRefGoogle Scholar
Supplementary material: File

Verhaegen et al. supplementary material

Verhaegen et al. supplementary material 1

Download Verhaegen et al. supplementary material(File)
File 880.3 KB
Supplementary material: File

Verhaegen et al. supplementary material

Verhaegen et al. supplementary material 2

Download Verhaegen et al. supplementary material(File)
File 17.8 KB