Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T21:15:04.060Z Has data issue: false hasContentIssue false

Dental histology of mosasaurs and a marine crocodylian from the Campanian (Upper Cretaceous) of southern Sweden: incremental growth lines and dentine formation rates

Published online by Cambridge University Press:  13 August 2013

JOHAN A. GREN*
Affiliation:
Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
JOHAN LINDGREN
Affiliation:
Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
*

Abstract

Mosasaurs are an extinct group of secondarily adapted aquatic lizards that became the dominant marine tetrapods in the Late Cretaceous oceans. They continuously shed and replaced their teeth in order to maintain a functional dentition at all times; however, the process of tooth development in mosasaurs is still incompletely known. Based on incremental line width measurements and growth line counts, we assess dentine formation rates in three mosasaur taxa (Dollosaurus, cf. Platecarpus and Tylosaurus) and one genus of marine crocodylian (Aigialosuchus), all from the lower Campanian (Upper Cretaceous) of southernmost Sweden. Two sets of periodic dentinal markings characterized by concentric, alternating opaque and transparent laminae are recognized: one set comprising thin bands situated 6–34 μm apart (depending on taxon), which is superimposed onto a second set of coarser bands where spaces vary between 102 and 275 μm. Assuming that the finer striations represent daily increments (i.e. lines of von Ebner), it is estimated that the deposition of dentine at the sectioned level of the tooth-crowns took 342 (cf. Platecarpus), 426 (Dollosaurus), 487 (Tylosaurus) and 259 (Aigialosuchus) days, respectively. The coarser bands contain between 11 and 13 thin striations each, and are thus considered to be homologous to similar periodic dentinal markings in extant vertebrates, i.e. Andresen lines. Prolonged tooth development times in large-toothed taxa, such as Tylosaurus, presumably increased the risk of long-term incapacity to capture prey after dental trauma, an evolutionary trade-off which may have been compensated for by allometric modifications of the teeth.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andresen, V. 1898. Die Querstreifung des Dentins. Deutsche Monatsschrift für Zahnheilkunde 38, 386–9.Google Scholar
Bauer, F. 1898. Die Ichthyosaurier des oberen weissen Jura. Palaeontographica 44, 283328.Google Scholar
Bergström, J. & Sundquist, B. 1978. Kritberggrunden. In Beskrivning till Berggrundskartan och Flygmagnetiska Kartan Kristianstad SO (eds Kornfält, K. A., Bergström, J., Carserud, L., Henkel, H. & Sundquist, B.), pp. 5599. Sveriges Geologiska Undersökning Af 121.Google Scholar
Bhaskar, S. N. 1991. Orban's Oral Histology and Embryology, 11th ed. St Louis: Elsevier.Google Scholar
Caldwell, M. W. 2007. Ontogeny, anatomy and attachment of the dentition in mosasaurs (Mosasauridae: Squamata). Zoological Journal of the Linnean Society 149, 687700.Google Scholar
Chinsamy, A., Tunoğlu, C. & Thomas, D. B. 2010. Dental microstructure and geochemistry of Mosasaurus hoffmanni (Squamata) from the Late Cretaceous of Turkey. Third Mosasaur Meeting, Muséum National d’ Histoire Naturelle, Paris, 18–22 May 2010, Schedule, Abstracts, Field Trip, p. 5.Google Scholar
Chinsamy, A., Tunoğlu, C. & Thomas, D. B. 2012. Dental microstructure and geochemistry of Mosasaurus hoffmanni (Squamata) from the Late Cretaceous of Turkey. Bulletin de la Société Géologique de France 183, 8592.Google Scholar
Christensen, W. K. 1975. Upper Cretaceous belemnites from the Kristianstad area in Scania. Fossils and Strata 7, 169.Google Scholar
Dean, M. C. 1995. The nature and periodicity of incremental lines in primate dentine and their relationship to periradicular bands in OH 16 (Homo habilis). In Aspects of Dental Biology; Paleontology, Anthropology and Evolution (ed. Moggi-Cecchi, J.), pp. 239–65. Florence: International Institute for the Study of Man.Google Scholar
Dean, M. C. 1998. Comparative observations on the spacing of short-period (von Ebner's) lines in dentine. Archives of Oral Biology 43, 1009–21.Google Scholar
Dean, M. C. 2000. Incremental markings in enamel and dentine: what they can tell us about the way teeth grow. In Development, Function and Evolution of Teeth (eds Teaford, M. F., Smith, M. M. & Ferguson, M. W. J.), pp. 119–30. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dean, M. C. & Scandrett, A. E. 1996. The relation between long-period incremental markings in dentine and daily cross-striations in enamel in human teeth. Archives of Oral Biology 41, 233–41.CrossRefGoogle ScholarPubMed
D'Emic, M. D., Whitlock, J. A., Smith, K. M., Wilson, J. A. & Fisher, D. C. 2009. The evolution of tooth replacement rates in sauropod dinosaurs. Journal of Vertebrate Paleontology 29, 84A.Google Scholar
Ebner, V. von 1902. Histologie der Zähne mit Einschluss der Histogenese. In Handbuch der Zahnheilkunde (ed. Scheff, J.), pp. 243–99. Wien: A. Holder. Google Scholar
Ebner, V. von 1906. Über die Entwicklung der leimgebenden Fibrillen, insbesondere im Zahnbein. Sitzungsberichte der Mathematisch-Naturwissen-schaftlichen Klasse der kaiserlichen Akademie der Wissenschaften in Wien 115, 281347.Google Scholar
Erickson, G. M. 1996 a. Incremental lines of von Ebner in dinosaurs and the assessment of tooth replacement rates using growth line counts. Proceedings of the National Academy of Sciences, USA 93, 14623–7.Google Scholar
Erickson, G. M. 1996 b. Daily deposition of dentine in juvenile Alligator and assessment of tooth replacement rates using incremental line counts. Journal of Morphology 228, 189–94.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Eriksson, M. E., Lindgren, J., Chin, K. & Månsby, U. 2011. Coprolite morphotypes from the Upper Cretaceous of Sweden: novel views on an ancient ecosystem and implications for coprolite taphonomy. Lethaia 44, 455–68.Google Scholar
Erlström, M. & Gabrielson, J. 1986. The Upper Cretaceous clastic deposits of Ullstorp, Kristianstad Basin, Scania. Geologiska Föreningens i Stockholm Förhandlingar 107, 241–54.CrossRefGoogle Scholar
Erlström, M. & Gabrielson, J. 1992. Petrology, fossil composition and depositional history of the Ignaberga limestone, Kristianstad Basin, Scania. Sveriges Geologiska Undersökning Ca 80, 130.Google Scholar
Hillson, S. 2005. Teeth, 2nd ed. Cambridge Manuals in Archaeology. Cambridge: Cambridge University Press.Google Scholar
Kamiya, H., Yoshida, T., Kusuhashi, N. & Matsuoka, H. 2006. Enamel texture of the tritylodontid mammal-like reptile, occurred from the lower Cretaceous in central Japan. Materials Science and Engineering C 26, 707–9.Google Scholar
Kawasaki, K., Tanaka, S. & Ishikawa, T. 1980. On the daily incremental lines in human dentine. Archives of Oral Biology 24, 939–43.Google Scholar
Kierdorf, H., Kierdorf, U., Witzel, C., Intoh, M. & Dobney, K. 2009. Developmental defects and postmortem changes in archaeological pig teeth from Fais Island, Micronesia. Journal of Archaeological Science 36, 1637–46.CrossRefGoogle Scholar
Kline, L. W. & Cullum, D. 1984. A long term study of the tooth replacement phenomenon in the young green iguana, Iguana iguana . Journal of Herpetology 18, 176–85.CrossRefGoogle Scholar
Lidmar-Bergström, K. 1982. Pre-Quaternary geomorphological evolution in southern Fennoscandia. Sveriges Geologiska Undersökning C 785, 1202.Google Scholar
Lindgren, J. 2005 a. The first record of Hainosaurus (Reptilia: Mosasauridae) from Sweden. Journal of Paleontology 79, 1157–65.Google Scholar
Lindgren, J. 2005 b. Dental and vertebral morphology of the enigmatic mosasaur Dollosaurus (Reptilia, Mosasauridae) from the lower Campanian (Upper Cretaceous) of southern Sweden. Bulletin of the Geological Society of Denmark 52, 1725.Google Scholar
Lindgren, J., Currie, P. J., Siverson, M., Rees, J., Cederström, P. & Lindgren, F. 2007. The first neoceratopsian dinosaur remains from Europe. Palaeontology 50, 929–37.Google Scholar
Lindgren, J. & Siverson, M. 2002. Tylosaurus ivoensis: a giant mosasaur from the early Campanian of Sweden. Transactions of the Royal Society of Edinburgh, Earth Sciences 93, 7393.Google Scholar
Lindgren, J. & Siverson, M. 2004. The first record of the mosasaur Clidastes from Europe and its palaeogeographical implications. Acta Palaeontologica Polonica 49, 219–34.Google Scholar
Lindgren, J. & Siverson, M. 2005. Halisaurus sternbergi, a small mosasaur with an intercontinental distribution. Journal of Paleontology 79, 763–73.Google Scholar
Lingham-Soliar, T. 1995. Anatomy and functional morphology of the largest marine reptile known, Mosasaurus hoffmanni (Mosasauridae, Reptilia) from the Upper Cretaceous, Upper Maastrichtian of The Netherlands. Philosophical Transactions of the Royal Society B: Biological Sciences 347, 155–80.Google Scholar
Massare, J. A. 1987. Tooth morphology and prey preference of Mesozoic marine reptiles. Journal of Vertebrate Paleontology 7, 121–37.Google Scholar
Maxwell, E. E., Caldwell, M. W. & Lamoureux, D. O. 2012. Tooth histology, attachment, and replacement in the Ichthyopoterygia reviewed in an evolutionary context. Paläontologische Zeitschrift 86, 114.Google Scholar
Nanci, A. 2008. Ten Cate's Oral Histology: Development, Structure, and Function, 7th ed. St Louis: Elsevier.Google Scholar
Owen, R. 1841. Odontography; or, a Treatise on the Comparative Anatomy of the Teeth; their Physiological Relations, Mode of Development, and Microscopic Structure, in the Vertebrate Animals. Volume 1. Text. London: Hippolyte Baillière.Google Scholar
Owen, R. 1845. Odontography; or, a Treatise on the Comparative Anatomy of the Teeth; their Physiological Relations, Mode of Development, and Microscopic Structure, in the Vertebrate Animals. Volume 2. Plates. London: Hippolyte Baillière.Google Scholar
Persson, P. O. 1959. Reptiles from the Senonian (U. Cret.) of Scania (S. Sweden). Arkiv för Mineralogi och Geologi 2, 431–78.Google Scholar
Persson, P. O. 1963. Studies on Mesozoic marine reptile faunas with particular regard to the Plesiosauria. Publications from the Institutes of Mineralogy, Paleontology and Quaternary Geology, University of Lund, Sweden 118, 115.Google Scholar
Richman, J. M. & Handrigan, G. R. 2011. Reptilian tooth development. Genesis 49, 247–60.CrossRefGoogle ScholarPubMed
Rieppel, O. & Kearney, M. 2005. Tooth replacement in the Late Cretaceous mosasaur Clidastes . Journal of Herpetology 39, 688–92.CrossRefGoogle Scholar
Russell, D. A. 1967. Systematics and morphology of American mosasaurs (Reptilia, Sauria). Peabody Museum of Natural History, Yale University, Bulletin 23, 1241.Google Scholar
Scheyer, T. M. & Moser, M. 2011. Survival of the thinnest: rediscovery of Bauer's (1898) ichthyosaur tooth sections from Upper Jurassic lithographic limestone quarries, south Germany. Swiss Journal of Geosciences 104, 147–57.Google Scholar
Sereno, P. C., Wilson, J. A., Witmer, L. M., Whitlock, J. A., Maga, A., Ide, O. & Rowe, T. A. 2007. Structural extremes in a Cretaceous sauropod. PLoS ONE 2 (11), e1230, doi:10.1371/journal.pone.0001230.Google Scholar
Siverson, M. 1993. Late Cretaceous and Danian neoselachians from southern Sweden. Lund Publications in Geology 110, 128.Google Scholar
Underwood, C. J., Mitchell, S. F. & Veltkamp, C. J. 1999. Microborings in mid-Cretaceous fish teeth. Proceedings of the Yorkshire Geological Society 52, 269–74.Google Scholar
Zaher, H. & Rieppel, O. 1999. Tooth implantation and replacement in squamates, with special reference to mosasaur lizards and snakes. American Museum Novitates 3271, 119.Google Scholar