Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T07:22:30.309Z Has data issue: false hasContentIssue false

Dating impact craters: palaeogeographic versus isotopic and stratigraphic methods – a brief case study

Published online by Cambridge University Press:  24 June 2008

MARTIN SCHMIEDER*
Affiliation:
Institut für Planetologie, Universität Stuttgart, Herdweg 51, D-70174 Stuttgart, Germany
ELMAR BUCHNER
Affiliation:
Institut für Planetologie, Universität Stuttgart, Herdweg 51, D-70174 Stuttgart, Germany
*
*Author for correspondence: [email protected]

Abstract

Isotopic and stratigraphic ages of the ~ 80 km diameter Puchezh-Katunki (Russia; 220 ± 10 to 167 ± 3 Ma) and the ~ 20 km diameter Obolon (Ukraine; 215 ± 25 to 169 ± 7 Ma) impact structures are associated with significant age uncertainties. As a case study, reconstructions of the palaeogeography at the time of crater formation (Late Triassic to Middle Jurassic) based on recent palaeogeographic maps help further to constrain impact ages. Palaeogeographic studies suggest that Puchezh-Katunki is older than 170 Ma and that Obolon is younger than 185 Ma. This also rules out that Obolon formed during a ~ 214 Ma Late Triassic multiple impact event as recently discussed.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buchner, E., Seyfried, H. & van den Bogaard, P. 2003. 40Ar/39Ar laser probe age determination confirms the Ries impact crater as the source of glass particles in Graupensand sediments (Grimmelfingen Formation, North Alpine Foreland Basin). International Journal of Earth Sciences 92, 16.CrossRefGoogle Scholar
Dypvik, H., Burchell, M. & Claeys, P. 2004 (eds.) Cratering in Marine Environments and on Ice. Berlin: Springer, 340 pp.CrossRefGoogle Scholar
Dypvik, H. & Jansa, L. F. 2005. Sedimentary signatures and processes during marine bolide impacts: a review. Sedimentary Geology 161, 309–37.CrossRefGoogle Scholar
Firsov, L. 1973. Concerning the meteoritic origin of the Puchezh-Katunki crater. Meteoritics 8, 223–44.CrossRefGoogle Scholar
Golonka, J. 2000. Cambrian–Neogene plate tectonic maps. Kraców: University of Kraców. Published Habilitation thesis, 125 pp.Google Scholar
Golonka, J. 2007. Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 297307.CrossRefGoogle Scholar
Grieve, R. A. F. 1987. Terrestrial impact structures. Annual Reviews of Earth and Planetary Science 15, 245–70.CrossRefGoogle Scholar
Grieve, R. A. F. 1991. Terrestrial impact: The record in the rocks. Meteoritics 26, 175–94.CrossRefGoogle Scholar
Grieve, R. A. F. & Pesonen, L. J. 1992. Terrestrial impact craters: Their spatial and temporal distribution and impacting bodies. Earth, Moon, and Planets 71, 357–76.Google Scholar
Gurov, E. P. & Gurova, E. P. 1995. Impact melt composition of the Obolon crater: chlorine as a possible indicator of the submarine crater formation. Meteoritics 30, 515.Google Scholar
Hodych, J. P. & Dunning, G. R. 1992. Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology 20, 51–4.2.3.CO;2>CrossRefGoogle Scholar
Ivanov, B. A. 1992. Geomechanical Models of Impact Cratering: Puchezh-Katunki Structure. Lunar and Planetary Institute Contribution 790, 40–1.Google Scholar
Ivanov, B. A. 1994. Geomechanical models of impact cratering: Puchezh-Katunki structure. Geological Society of America Special Paper 293, 8191.CrossRefGoogle Scholar
Jourdan, F., Renne, P. R. & Reimold, W. U. 2007. The problem of inherited 40Ar in dating impact glass by the 40Ar/39Ar method: Evidence from the Tswaing impact crater (South Africa). Geochimica et Cosmochimica Acta 71, 1214–31.CrossRefGoogle Scholar
Jourdan, F., Renne, P. R. & Reimold, W. U. 2008. High-precision 40Ar/39Ar age of the Jänisjärvi impact structure (Russia). Earth and Planetary Science Letters 265, 438–49.CrossRefGoogle Scholar
Kamo, S. L., Reimold, W. U., Krogh, T. E. & Colliston, W. P. 1996. A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth and Planetary Science Letters 144, 369–87.CrossRefGoogle Scholar
Kelley, S. P. & Spray, J. G. 1997. A late Triassic age for the Rochechouart impact structure, France. Meteoritics and Planetary Science 32, 629–36.CrossRefGoogle Scholar
King Jr, D. T., Neathery, T. L., Petruny, L. W., Koeberl, C. & Hames, W. E. 2002. Shallow-marine impact origin of the Wetumpka structure (Alabama, USA). Earth and Planetary Science Letters 202, 541–9.CrossRefGoogle Scholar
Koeberl, C. & Reimold, W. U. 1995. The Newporte impact structure, North Dakota, USA. Geochimica et Cosmochimica Acta 59, 4747–67.CrossRefGoogle Scholar
Koeberl, C., Reimold, W. U. & Brandt, D. 1996. Red Wing Creek structure, North Dakota: Petrographical and geochemical studies, and confirmation of impact origin. Meteoritics and Planetary Science 31, 335–42.CrossRefGoogle Scholar
Krymholts, G. Y. 1972. Stratigraphy of the USSR – Vol. 10: The Jurassic System (in Russian). Moscow: Gosgeoltechizdat, 524 pp.Google Scholar
Masaitis, V. L. 1999. Impact structures of northeastern Eurasia: the territories of Russia and adjacent countries. Meteoritics and Planetary Science 34, 691711.CrossRefGoogle Scholar
Masaitis, V. L., Danilin, A. N., Mashchak, M. S., Raikhlin, A. I., Selivanovskaya, T. V. & Shadenkov, Y. M. 1980. Geology of Astroblemes (in Russian). Leningrad: Nedra, 231 pp.Google Scholar
Masaitis, V. L. & Mashchak, M. S. 1990. Puchezh-Katunki astrobleme: Structure of central uplift and transformation of composing rocks. Meteoritics 25, 383.Google Scholar
Masaitis, V. L. & Balmasov, E. L. 1996. Projectile matter in the impactites of Puchezh-Katunki crater: Preliminary data. Meteoritics and Planetary Science 31, A83.Google Scholar
Masaitis, V. L., Mashchak, M. S. & Naumov, M. V. 1996. The Puchezh-Katunki astrobleme: a structural model of a giant impact crater. Astronomicheskii vestnik 30, 513.Google Scholar
Masaitis, V. L. & Pevzner, L. A. 1999. Deep Drilling in the Puchezh-Katunki Impact Structure. St. Petersburg: VSEGEI, 392 pp.Google Scholar
Ormö, J. & Lindström, M. 2000. When a cosmic impact strikes the sea bed. Geological Magazine 137, 6780.CrossRefGoogle Scholar
Pálfy, J. 2005. Did the Puchezh-Katunki impact trigger an extinction? In Cratering in Marine Environments and on Ice (eds Dypvik, H. & Burchell, M.), pp. 135–48. Berlin: Springer.Google Scholar
Poag, C. W., Koeberl, C. & Reimold, W. U. 2004 (eds) The Chesapeake Bay Crater – Geology and Geophysics of a Late Eocene Submarine Impact Structure. Berlin: Springer, 522 pp.Google Scholar
Reimold, W. U. 2007. The Impact Crater Bandwagon (some problems with the terrestrial impact cratering record). Meteoritics and Planetary Science 42, 1467–72.CrossRefGoogle Scholar
Reimold, W. U., Barr, J. M., Grieve, R. A. F. & Durrheim, R. J. 1990. Geochemistry of the melt and country rocks of the Lake St. Martin impact structure, Manitoba, Canada. Geochemica et Cosmochimica Acta 54, 2093–111.CrossRefGoogle Scholar
Reimold, W. U., Kelley, S. P., Sherlock, S. C., Henkel, H. & Koeberl, C. 2005. Laser Argon dating of melt breccias from the Siljan impact structure: Implications for possible relationship to Late Devonian extinction events. Meteoritics and Planetary Science 40, 591607.CrossRefGoogle Scholar
Renne, P. R., Jourdan, F. & Reimold, W. U. 2007. Status of the impact crater age database. Geochimica et Cosmochimica Acta 71, A833.Google Scholar
Schmieder, M., Moilanen, J. & Buchner, E. 2008. Impact melt rocks from the Paasselkä impact structure (SE Finland): petrography and geochemistry. Meteoritics and Planetary Science (in press).CrossRefGoogle Scholar
Spray, J. G., Kelley, S. P. & Rowley, D. B. 1998. Evidence for a late Triassic multiple impact event on Earth. Nature 392, 171–3.CrossRefGoogle Scholar
Sturkell, E. F. F. 1998. Resurge morphology of the marine Lockne impact crater, Jämtland, central Sweden. Geological Magazine 135, 121–7.CrossRefGoogle Scholar
Swisher, C. C., Grajales-Nishimura, J. M., Montanari, A., Margolis, S. V., Claeys, P., Alvarez, W., Renne, P., Cedillo-Pardoa, E., Maurrasse, F. J.-M. R., Curtis, G. H., Smit, J. & McWilliams, M. O. 1992. Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous–Tertiary boundary tektites. Science 257, 954–8.CrossRefGoogle ScholarPubMed
Valter, A. A. 2002. Obolon astrobleme in Ukraine: Probable rare type of the crater structure and formation. 8th ESF–IMPACT Workshop ‘Impact Tectonism’, May 31–June 03, 2002, Mora, Sweden (abstract), 66.Google Scholar
Valter, A. A., Asimov, A. T., Voizizkji, E. J. & Sirchenko, W. W. 2000. The probably unique geological structure of the Obolon astrobleme: complicated crater form within the central hole. In Current problems with Comets, Asteroids, Meteors, Meteorites, Astroblemes, and Craters – Proceedings of the CAMMAC 99 Meeting, September 27–October 2, 1999 (ed. Churyumova, K. I.), pp. 343–66. Ukraine: Vinnitsa (in Russian).Google Scholar
Valter, A. A. & Ryabenko, V. A. 1977. Explosion craters on the Ukrainian Shield (in Russian). Kiev: Naukova Dumka, 154 pp.Google Scholar
Ziegler, A. M., Scotese, C. R. & Barrett, S. F. 1983. Tidal Friction and the Earth's Rotation II. In Proceedings of a Workshop held at the Centre for Interdisciplinary Research of the University of Bielefeld, September 28–October 3, 1981 (eds P. Brosche & J. Sundermann), pp. 240–52. New York: Springer.Google Scholar