Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T14:31:23.355Z Has data issue: false hasContentIssue false

Crust–mantle interaction in western Turkey: implications from Sr and Nd isotope geochemistry of Tertiary and Quaternary volcanics

Published online by Cambridge University Press:  01 May 2009

N. Güleç*
Affiliation:
Department of Geological Engineering, Middle East Technical University, Ankara, Turkey

Abstract

The isotopic composition of Sr and Nd together with the abundance data for major and trace elements are reported for Tertiary to Quaternary volcanics from a variety of localities in western Turkey. These data are used to evaluate the role of crust–mantle interaction in the petrogenesis of the western Turkish volcanics. The major and trace element chemistry reveals a general change in the nature of volcanism from dominantly calc-alkaline in Tertiary to alkaline in Quaternary times. The calc-alkaline rocks are quartz-normative and comprise andesitic to rhyolitic compositions of Miocene–Pliocene age; the trace element patterns are typical of continental margin volcanics with high Ba/Nb ratios and negative Ti anomalies. The alkaline rocks are nepheline-normative and dominantly Quaternary in age; they are basic in composition, with a change from potassic nature in Miocene–Pliocene to sodic in Quaternary times. Most of the Tertiary alkaline volcanics display trace element patterns similar to those of the calc-alkaline ones, whereas the Quaternary alkaline volcanics have low Ba/Nb ratios without negative Ti anomalies; they resemble intraplate volcanics.

The calc-alkaline rocks have high 87Sr/86Sr (from 0.705011 to 0.709529) and low 143Nd/144Nd ratios (from 0.512294 to 0.512691). With the exception of two Tertiary samples, all the alkaline volcanics plot within the so-called mantle array of the isotope correlation diagram, 87Sr/86Sr ratios ranging from 0.703128 to 0.703628 and 143Nd/144Nd ratios ranging from 0.512749 to 0.512998. The two Tertiary alkaline samples, with trace element patterns similar to those of the calc-alkaline ones, have considerably higher Sr (0.707741–0.707918) and lower Nd (0.512494–0.512514) isotope compositions. The combined isotope and chemical data suggest the derivation of the western Turkish volcanics from variable mixtures of melts generated in two different mantle regions. The calc-alkaline volcanics were essentially derived from the continental lithospheric or shallow asthenospheric mantle which was contaminated with upper crustal material during earlier subduction events. The generation of the alkaline volcanics was controlled by melts derived from relatively deep, isotopically depleted mantle regions. Most of the volcanics were subjected to contamination at crustal levels, through the operation of an assimilation–fractional crystallization (AFC) process. The nature of contaminant changed from upper crustal in the calc-alkaline to lower crustal in the alkaline volcanics, accompanying the overall decrease in the amount of contamination from about 50% down to about 10%, and broadly paralleling the transition from compressional to extensional tectonics in the region.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelier, J., Dumont, J. F., Karamanderesi, H., Poisson, A., Şimşek, S. & Uysal, S. 1981. Analyses of fault mechanisms and expansion of southwestern Anatolia since the Late Miocene. Tectonophysics 75, Tl9.CrossRefGoogle Scholar
Ataman, G. 1972. Orhaneli granodiyoritik kütlesinin radyometrik ya⊡i. Türkiye Jeoloji Kurumu Bülteni XV/2, 125–30.Google Scholar
Borsi, S., Ferrara, G., Innocenti, F. & Mazzuoli, R. 1972. Geochronology and petrology of recent volcanism in the eastern Aegean Sea (West Anatolia and Lesvos Island). Bulletin of Volcanology 36, 473–96.CrossRefGoogle Scholar
Carter, S. R., Evensen, N. M., Hamilton, P. J. & O'Nions, R. K. 1978. Continental volcanics derived from enriched and depleted source regions: Nd-and-Sr isotope evidence. Earth and Planetary Science Letters 37, 401–8.CrossRefGoogle Scholar
Cohen, R. S. & O'Nions, R. K. 1982. The lead, neodymium, and strontium isotopic structure of ocean ridge basalts. Journal of Petrology 23, 299324.CrossRefGoogle Scholar
Cox, K. G. & Hawkesworth, C. J. 1984. Relative contribution of crust and mantle to flood basalt volcanism, Mahabaleswar area, Deccan Traps. Philosophical Transactions of the Royal Society, Series A, 310, 627–41.Google Scholar
De Paolo, D. J. 1981. Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth and Planetary Science Letters 53, 189202.CrossRefGoogle Scholar
De Paolo, D. J. & Wasserburg, G. J. 1979. Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochimica et Cosmochimica Acta 43, 615–27.CrossRefGoogle Scholar
Dora, Ö. O., Savaşçin, M. Y., Kun, N. & Candan, O. 1987. Menderes Masifinde postmetamorfik plütonlar. Yerbilimleri 14, 7989.Google Scholar
Dosso, L. & Murthy, V. R. 1980. A neodymium isotopic study of the Kerguelen islands: Inferences on enriched oceanic mantle sources. Earth and Planetary Science Letters 48, 268–76.CrossRefGoogle Scholar
Dürr, S., Altherr, R., Keller, J., Okrusch, M. & Seidel, E. 1978. The median Aegean crystalline belt: Stratigraphy, structure, metamorphism, magmatism. In Alps, Appenines and Hellenides (eds Closs, H., Roeder, D. and Schmidt, K.), pp. 455–76. Stuttgart: E. Schweizer-barts`che Verlagsbuchhandlung.Google Scholar
Ercan, T. 1981. Bati Anadolu Tersiyer volkanitleri ve Bodrum Yarimadasindaki volkanizmamn durumu. İstanbul Yerbilimleri Dergisi 2, 263–81.Google Scholar
Ercan, T. 1982. Kula yöresinin jeolojisi ve volkanitlerin petrolojisi. İstanbul Yerbilimleri Dergisi 3, 77124.Google Scholar
Ercan, T. 1983. Gördes volkanitlerinin (Manisa) petrolojisi ve kökensel yorumu. Türkiye Jeoloji Kurumu Bülteni 26, 41–8.Google Scholar
Ercan, T. & Günay, E. 1981. Söke yöresindeki Tersiyer volkanizmasi ve bölgesel yayilimi. Jeomorfoloji Dergisi 10, 117–37.Google Scholar
Ercan, T., Günay, E. & Baş, H. 1983. Denizli volkanitlerinin petrolojisi ve plaka tektonig˜i açisindan bölgesel yorumu. Türkiye Jeoloji Kurumu Bülteni 22, 185–98.Google Scholar
Ercan, T., Günay, E. & Savaşçin, M. Y. 1984. Simav ve çevresindeki Senozoyik yaşli volkanizmamn bölgesel yorumlanmasi. Maden Tetkik Arama Dergisi 97/98, 85101.Google Scholar
Ercan, T., Günay, E., Akyürek, B., Çevikbaş, A., Ateş, M., Can, B., Erkan, M. & Özkirişçi, C. 1984. Dikili – Bergama – Çandarli (Bati Anadolu) yöresinin jeolojisi ve magmatik kayaçlarimn petrolojisi. Jeoloji Mühendisligˇi Dergisi 20, 4760.Google Scholar
Ercan, T., Satir, M., Kreuzer, H., Türkecan, A., Günay, E., Çevikbaş, A., Ateş, M. & Can, B. 1985. Bati Anadolu Senozoyik volkanitlerine ait yeni kimyasal, izotopik ve radyometrik verilerin yorumu. Türkiye Jeoloji Kurumu Bülteni 28, 121–36.Google Scholar
Fytikas, M., Guiliani, O., Innocenti, F., Marinelli, G. & Mazzuoli, R. 1976. Geochronological data on recent magmatism of the Aegean Sea. Tectonophysics 31, T2934.CrossRefGoogle Scholar
Fytikas, M., Innocenti, F., Manetti, P., Mazzuoli, R., Peccerillo, A. & Villari, L. 1984. Tertiary to Quaternary evolution of volcanism in the Aegean region. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. and Robertson, A. H. F.), pp. 687–99. Geological Society Special Publication no. 17.Google Scholar
Galer, S. J. G. & O'Nions, R. K. 1986. Magmagenesis and the mapping of chemical and isotopic variations in the mantle. Chemical Geology 56, 4561.CrossRefGoogle Scholar
Goldstein, S. L., O'Nions, R. K. & Hamilton, P. J. 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters 70, 221–36CrossRefGoogle Scholar
Hamilton, P. J., O'Nions, R. K., Bridgewater, D. & Nutman, A. 1983. Sm-Nd studies of Archean metasediments and meta-volcanics from W. Greenland and their implications for the Earth's early history. Earth and Planetary Science Letters 62, 263–72.CrossRefGoogle Scholar
Hawkesworth, C. J. 1979. 143Nd/144Nd, 87Sr/86Sr and trace element characteristics of magmas along destructive plate margins. In Origin of Granite Batholiths: Geochemical Evidence (eds Atherton, M. P. and Tarney, J.), pp. 7689. Nantwich: Shiva Publishing Limited.CrossRefGoogle Scholar
Hawkesworth, C. J. 1982. Isotope characteristics of magmas erupted along destructive plate margins. In Orogenic Andesites and Related Rocks (ed Thorpe, R. S.), pp. 549–71. New York: John Wiley and Sons.Google Scholar
Hawkesworth, C. J., O'Nions, R. K. & Arculus, R. J. 1979. Nd and Sr isotope geochemistry of island arc volcanics, Grenada, Lesser Antilles. Earth and Planetary Science Letters 45, 237–48.CrossRefGoogle Scholar
Hawkesworth, C. J., Norry, M. J., Roddick, J. C. & Vollmer, R. 1979 a. 143nd/144Nd and 87Sr/86Sr ratios from the Azores and their significance in LIL-element enriched mantle. Nature 280, 2831.CrossRefGoogle Scholar
Hawkesworth, C. J., Norry, M. J., Roddick, J. C, Baker, P. E., Francis, W. & Thorpe, R. S. 1979 b. 143Nd/144Nd, 87Sr/86Sr, and incompatible trace element variations in calc-alkaline andesitic and plateau lavas from South America. Earth and Planetary Science Letters 42, 4557.CrossRefGoogle Scholar
Hawkesworth, C. J., Hammill, M., Gledhill, A. R., van Calsteren, P. & Rogers, G. 1982. Isotope and trace element evidence for late stage intra-crustal melting in the high Andes. Earth and Planetary Science Letters 58, 240–54.CrossRefGoogle Scholar
Hawkesworth, C. J., Erlank, A. J., Marsh, J. S., Menzies, M. A. & Van Calsteren, P. 1983. Evolution of the continental lithosphere: Evidence from volcanics and xenoliths in southern Africa. In Continental Basalts and Mantle Xenoliths (eds Hawkesworth, C. J. and Norry, M. J.), pp. 111–38. Cheshire: Shiva Publishing Limited.Google Scholar
Innocenti, F. & Mazzuoli, R. 1972. Petrology of the İzmir–Karaburun volcanic area (West Turkey). Bulletin of Volcanology 36, 83104.CrossRefGoogle Scholar
Innocenti, F., Manetti, P., Mazzuoli, R., Pasquare, G. & Villari, L. 1982. Regional distribution and character of active andesite volcanism – Anatolia and north-western Iran. In Orogenic Andesites and Related Rocks (ed Thorpe, R. S.), pp. 327–49. New York: John Wiley and Sons.Google Scholar
Jackson, J. A., King, G. & Vita-Finzi, C. 1982. The neotectonics of the Aegean: an alternative view. Earth and Planetary Science Letters 61, 303–18.CrossRefGoogle Scholar
Jacobsen, S. B. & Wasserburg, G. J. 1979. The mean age of mantle and crustal reservoirs. Journal of Geophysical Research 84, 7411–27.CrossRefGoogle Scholar
James, D. E. 1984. Quantitative models for crustal contamination in the central and northern Andes. In Andean magmatism: Chemical and Isotopic Constraints (eds Harmon, R. S. and Barreiro, B. A.), pp. 124–38. Cheshire: Shiva Publishing Limited.CrossRefGoogle Scholar
Keller, J. 1982. Mediterranean island arcs. In Orogenic Andesites and Related Rocks (ed Thorpe, R. S.), pp. 308–25. New York: John Wiley and Sons.Google Scholar
Keller, J. 1983. Potassic lavas in the orogenic volcanism of the Mediterranean area. Journal of Volcanology and Geothermal Research 18, 321–35.CrossRefGoogle Scholar
Keller, J. & Villari, L. 1972. Rhyolitic ignimbrites in the region of Afyon (Central Anatolia). Bulletin of Volcanology XXXVI–2, 342–58.CrossRefGoogle Scholar
McCulloch, M. T. & Wasserburg, G. J. 1978. Sm-Nd and Rb-Sr chronology of continental crust formation. Science 200, 1003.CrossRefGoogle ScholarPubMed
Menzies, M., Leeman, W. P. & Hawkesworth, C. J. 1983. Isotope geochemistry of Cenozoic volcanic rocks reveals mantle heterogeneity below western USA. Nature 303, 205–9.CrossRefGoogle Scholar
Norry, M. J., Truckle, P. H., Lipard, S. J., Hawkesworth, C. J., Weaver, S. D. & Marriner, G. F. 1980. Isotopic and trace element evidence from lavas bearing on mantle heterogeneity beneath Kenya. Philosophical Transactions of the Royal Society, Series A, 297, 259–71.Google Scholar
Okay, A. I. 1986. High-pressure/low-temperature metamorphic rocks of Turkey. Geological Society of America, Memoir 164, 333–47.CrossRefGoogle Scholar
O'Nions, R. K., Hamilton, P. J. & Evensen, N. M. 1977. Variations in 143Nd/144Nd and 87Sr/86Sr ratios in oceanic basalts. Earth and Planetary Science Letters 34, 1322.CrossRefGoogle Scholar
O'Nions, R. K., Evensen, N. M. & Hamilton, P. J. 1979. Geochemical modelling of mantle differentiation and crustal growth. Journal of Geophysical Research 84, 6091–101.CrossRefGoogle Scholar
Pearce, J. A. 1982. Trace element characteristics of lavas from destructive plate boundaries. In Orogenic Andesites and Related Rocks (ed Thorpe, R. S.), pp. 525–48. New York: John Wiley and Sons.Google Scholar
Pearce, J. A. 1983. Role of subcontinental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths (eds Hawkesworth, C. J. and Norry, M. J.), pp. 230–49. Cheshire: Shiva Publishing Limited.Google Scholar
Philpotts, J. A. & Schnetzler, C. C. 1970. Phenocryst-matrix coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochimica et Cosmochimica Acta 34, 307–22.CrossRefGoogle Scholar
Robert, V. 1976. Donées nouvelles sur le volcanisme du sud-est de la Mer Egée. Proceedings of the International Congress on Thermal Waters, Geothermal Energy and Vulcanism of the Mediterranean Area 3, 211–24.Google Scholar
Robertson, A. H. F. & Dixon, J. E. 1984. Introduction: aspects of the geological evolution of the eastern Mediterranean. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. and Robertson, A. H. F.), pp. 174. Geological Society Special Publication no. 17.Google Scholar
Rogers, N. W. & Hawkesworth, C. J. 1982. Proterozoic age and cumulate origin for granulite xenoliths, Lesotho. Nature 299, 409–13.CrossRefGoogle Scholar
Satir, M. & Todt, W. 1986. Discordant U-Pb ages from polymetamorphic rocks of the Menders Massif. Terra Cognita 6, 255 (Abstract).Google Scholar
Saunders, A. D., Tarney, J. & Weaver, S. D. 1980. Transverse geochemical variations across the Antarctic Peninsula: implications for the genesis of calc-alkaline magmas. Earth and Planetary Science Letters 46, 344–60.CrossRefGoogle Scholar
Savaşccedil;in, M. Y. 1977. Some alkaline rocks and hybrid magmas of the western Anatolia. Proceedings of the International Congress on Thermal Waters, Geothermal Energy and Vulcanism of the Mediterranean Area 3, pp. 225–39.Google Scholar
Savaşçin, M. Y. 1982. Bati Anadolu Neojen magmatizmasimn yapisal ve petrografik ögeleri. In Bati Anadolu'nun Genç Tektonigˇive Volkanizmasi, pp. 2238. Ankara: Türkiye Jeoloji Kurumu.Google Scholar
Schnetzler, C. C. & Philpotts, J. A. 1970. Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts-II. Geochimica et Cosmochimica Acta 34, 331–40.CrossRefGoogle Scholar
Şengör, A. M. C. 1984 a. Structural classification of the tectonic history of Turkey. Proceedings of Ketin Symposium, pp. 3761. Ankara: Türkiye Jeoloji Kurumu (in Turkish, abstract in English).Google Scholar
Şengör, A. M. C. 1984 b. The Cimmeriden orogenic System and the tectonics of Eurasia. Geological Society of America, Special Paper no. 195, pp. 82.Google Scholar
Şengör, A. M. C, Satir, M. & Akkök, R. 1984. Timing of tectonic events in the Menderes Massif, western Turkey: Implications for tectonic evolution and evidence for Pan-African basement in Turkey. Tectonics 3/7, 693707.CrossRefGoogle Scholar
Sparks, R. S. J. 1986. The role of crustal contamination in magma evolution through geologic time. Earth and Planetary Science Letters 78, 211–23.CrossRefGoogle Scholar
Taylor, S. R. & McLennan, S. M. 1981. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society, Series A, 301, 381–99.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Black-well Scientific Publications, 312 pp.Google Scholar
Thirlwall, M. F. & Jones, N. W. 1983. Isotope geochemistry and contamination mechanics of Tertiary lavas from Skye, Northwest Scotland. In Continental Basalts and Mantle Xenoliths (eds Hawkesworth, C. J. and Norry, M. J.), pp. 186208. Cheshire: Shiva Publishing Limited.Google Scholar
Veizer, J. & Compston, W. 1974, 87Sr/86Sr composition of sea water during the Phanerozoic. Geochimica et Cosmochimica Acta 38, 1461–84.CrossRefGoogle Scholar
White, W. M. & Hofmann, A. W. 1982. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution in Proterozoic. Nature 296, 821–25.CrossRefGoogle Scholar
Yilmaz, İ. 1977. Sancaktepe granitinin (Kocaeli Yarimadasi) mutlak yaşi ve jenezi. Türkiye Jeoloji Kurumu Bülteni 20/1, 17.Google Scholar
Zanettin, B. 1984. Proposed new classification of volcanic rocks. Episodes 7/4, 1920.CrossRefGoogle Scholar