Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T12:42:59.011Z Has data issue: false hasContentIssue false

Correlation of the Cambrian Evolutionary Radiation: geochronology, evolutionary stasis of earliest Cambrian (Terreneuvian) small shelly fossil (SSF) taxa, and chronostratigraphic significance

Published online by Cambridge University Press:  01 February 2016

ED LANDING*
Affiliation:
New York State Museum, 222 Madison Avenue, Albany, NY 12230, USA
ARTEM KOUCHINSKY
Affiliation:
Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
*
Author for correspondence: [email protected]

Abstract

Early faunas with Watsonella crosbyi with or without Aldanella spp. have been equated with the Siberian Tommotian Stage (uppermost Terreneuvian) and used to define a proposed Cambrian Stage 2 base. Much earlier Terreneuvian occurrences are now shown by recovery of these micromolluscs below the I’ carbon excursion in the Siberian ‘Nemakit-Daldynian’ Stage and comparable δ13C excursions in the middle Meishucunian (China) and middle Chapel Island Formation (Avalonia). This δ13C excursion, a reliable Stage 2 marker, lies in a c. 10 Ma interval in the Cambrian Radiation in which long-ranged small shelly fossil taxa provide limited biostratigraphic resolution.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brasier, M. D. 1989. Towards a biostratigraphy of the earliest skeletal faunas. In The Precambrian–Cambrian Boundary (eds Cowie, J. W. & Brasier, M. D.), pp. 117‒64. Oxford: Oxford Monographs on Geology and Geophysics, no. 22.Google Scholar
Brasier, M. D., Anderson, M. M. & Corfield, R. M. 1992. Oxygen and carbon isotope stratigraphy of Early Cambrian carbonates in southeastern Newfoundland and England. Geological Magazine 129, 265–79.CrossRefGoogle Scholar
Brasier, M. D., Corfield, R. M., Derry, L. D., Rozavov, A. Yu. & Zhuravlev, A. Yu. 1994a. Multiple δ13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia. Geology 22, 455–8.2.3.CO;2>CrossRefGoogle Scholar
Brasier, M. D., Cowie, J. & Taylor, M. E. 1994. Decision on the Precambrian–Cambrian boundary. Episodes 17, 95100.Google Scholar
Brasier, M. D., Dorjnamjaa, D. & Lindsay, J. F. 1996. The Neoproterozoic to Early Cambrian in southeast Mongolia: an introduction. Geological Magazine 133, 365–9.CrossRefGoogle Scholar
Brasier, M. D., Rozanov, A. Yu., Zhuravlev, A. Yu., Corfield, R. M. & Derry, L.A. 1994b. A carbon isotope reference scale for the Lower Cambrian succession in Siberia: report of IGCP Project 303. Geological Magazine 131, 767–83.Google Scholar
Brasier, M. D., Shields, G., Kuleshov, V. N. & Zhegallo, E. A. 1996. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic–Early Cambrian of southeast Mongolia. Geological Magazine 133, 445–89.Google Scholar
Demidenko, Yu. E. & Parkhaev, P. Yu. 2014. On the problem of recognition of the lower Tommotian boundary using the SSF. In IGCP Project 591 Field Workshop 2014 (eds Zhan, R. & Huang, B.), pp. 2631. Nanjing: Nanjing University Press.Google Scholar
Devaere, L., Clausen, S., Steiner, M., Álvaro, J. J. & Vachard, D. 2013. Chronostratigraphic and palaeogeographic significance of an Early Cambrian microfauna from the Heraultia Limestone, southern Montagne Noire, France. Palaeontologica Electronica 16, 191. palaeo-electronica.org./content/2013/298-french-cambrian-microfauna.Google Scholar
Esakova, N. V. & Zhegallo, E. A. 1996. Biostratigrafiya i fauna nizhnego kembriya Mongolii. Moscow: Nauka, 214 pp. (in Russian).Google Scholar
Geyer, G. & Uchman, A. 1995. Ichnofossil assemblages from the Nama Group (Neoproterozoic‒Lower Cambrian) in Namibia and the Proterozoic‒Cambrian boundary problem revisited. Beringeria Special Issue 2, 175202.Google Scholar
Jaing, Z. 1982. Small shelly fossils. In The Sinian‒Cambrian Boundary in Eastern Yunnan. (eds Luo, H., Jiang, Z., Wu, X. et al.), pp. 163‒99. Yunnan: The People's Publishing House (in Chinese).Google Scholar
Kaufman, A. J., Knoll, A. H., Semikhatov, M. A., Grotzinger, J. P., Jacobsen, S. B. & Adams, W. 1996. Integrated chronostratigraphy of Proterozoic–Cambrian boundary beds in the western Anabar region, northern Siberia. Geological Magazine 133, 509–33.Google Scholar
Kaufman, A. J., Peek, S., Martin, A. J., Cui, H., Grazhdankin, D., Rogov, V., Xiao, S., Buchwaldt, R. & Bowring, S. A. 2012. A shorter fuse for the Cambrian Explosion? Geological Society of America, Abstracts with Programs 44, 326.Google Scholar
Khomentovsky, V. V. & Karlova, G. A. 1993. Biostratigraphy of the Vendian–Cambrian boundary beds and the Lower Cambrian boundary in Siberia. Geological Magazine 130, 2945.CrossRefGoogle Scholar
Khomentovsky, V. V. & Karlova, G. A. 2002. The boundary between the Nemakit-Daldynian and Tommotian Stages (Vendian–Cambrian Systems) of Siberia. Stratigraphy and Geological Correlation 10, 217–38.Google Scholar
Khomentovsky, V. V., Val'kov, A. K. & Karlova, G. A. 1990. New data on the biostratigraphy of transitional Vendian–Cambrian strata in the middle reaches of the River Aldan. In Late Precambrian and Early Palaeozoic of Siberia. Problems in Regional Stratigraphy (eds Khomentovsky, V. V. & Gibsher, A. S.), pp. 357. Novosibirsk: Institut Geologii i Geofiziki SO AN SSSR (in Russian).Google Scholar
Kirschvink, J. L., Magaritz, M., Ripperdan, R. L., Zhuravlev, A. Yu. & Rozanov, A. Yu. 1991. The Precambrian/Cambrian boundary: magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco, and South China. GSA Today 1, 6972, 87, 91.Google Scholar
Knoll, A. H., Grotzinger, J. P., Kaufnan, A. J. & Kolosov, P. 1995a. Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek Uplift, northeastern Siberia. Precambrian Research 73, 251–70.CrossRefGoogle ScholarPubMed
Knoll, A. H., Kaufman, A. J., Semikhatov, M. A., Grotzinger, J. P. & Adams, W. 1995b. Sizing up the sub-Tommotian unconformity in Siberia. Geology 23, 1139–43.Google Scholar
Kouchinsky, A., Bengtson, S., Misssarzhevsky, V. V., Pelechaty, S., Torssander, P. & Val'kov, A. K. 2001. Carbon isotope stratigraphy and the problem of a pre-Tommotian stage in Siberia. Geological Magazine 138, 387–96.CrossRefGoogle Scholar
Kouchinsky, A., Bengtson, S., Pavlov, V. E., Pavlov, V., Runnegar, B. N., Val'kov, A. & Young, E. 2005. Pre-Tommotian age of the lower Pestrotsvet Formation in the Selinde section on the Siberian platform: carbon isotopic evidence. Geological Magazine 142, 319–25.Google Scholar
Kouchinsky, A., Bengtson, S., Pavlov, V. E., Runnegar, B. N., Torssander, P., Young, E. & Ziegler, K. 2007. Carbon isotope stratigraphy of the Precambrian‒Cambrian Sukharikha River section, northwestern Siberian platform. Geological Magazine 144, 110.Google Scholar
Landing, E. 1984. Skeleton of lapworthellids and the supragenric classification of tommotiids (Early and Middle Cambrian phosphatic problematica). Journal of Paleontology 58, 1380–98.Google Scholar
Landing, E. 1988. Lower Cambrian of eastern Massachusetts: stratigraphy and small shelly fossils. Journal of Paleontology 62, 661–95.Google Scholar
Landing, E. 1992. Precambrian–Cambrian boundary GSSP, SE Newfoundland: Biostratigraphy and geochronology. Bulletin of Liason of the Subcommission on Geochronology 11, 68.Google Scholar
Landing, E. 1994. Precambrian–Cambrian global stratotype ratified and a new perspective of Cambrian time. Geology 22, 179–82.2.3.CO;2>CrossRefGoogle Scholar
Landing, E. 1996. Avalon: insular continent by the latest Precambrian. In Avalonian and Related Peri-Gondwana Terrances of the Circum-North Atlantic (eds Nance, R. D. & Thompson, M.), pp. 2764. Geological Society of America, Special Paper no. 304.Google Scholar
Landing, E. 2004. Precambrian–Cambrian boundary interval deposition and the marginal platform of the Avalon microcontinent. Journal of Geodynamics 37, 411–35.CrossRefGoogle Scholar
Landing, E., Bowring, S. A., Davidek, K., Westrop, S. R., Geyer, G. & Heldmaier, W. 1998. Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Sciences 35, 329–38.Google Scholar
Landing, E., Geyer, G., Brasier, M. D. & Bowring, S. A. 2013. Cambrian Evolutionary Radiation: context, correlation, and chronostratigraphy—overcoming deficiencies of the first appearance datum (FAD) concept. Earth-Science-Reviews 123, 133–72, doi: 10.1016/j.earscirev.2013.03.008.Google Scholar
Landing, E., Myrow, P., Benus, A. P. & Narbonne, G. M. 1989. The Placentian Series: appearance of the oldest skeletalized faunas in southeastern Newfoundland. Journal of Paleontology 63, 739–69.CrossRefGoogle Scholar
Landing, E., Peng, S. C., Babcock, L. E., Geyer, G. & Moczydłowska-Vidal, M. 2007. Global standard names for the lowermost Cambrian series and stage. Episodes 30, 283–9.Google Scholar
Landing, E. & Westrop, S. R. 2004. Environmental patterns in the origin and evolution and diversification loci of Early Cambrian skeletalized Metazoa: evidence from the Avalon microcontinent. In Neoproterozoic–Cambrian Biological Revolutions (eds Lipps, J. H. & Wagoner, B.), pp. 93105. Paleontological Society, Yale University, New Haven, Connecticut, Volume 10.Google Scholar
Li, D., Ling, H. F., Jiang, S. Y., Pan, J. Y., Chen, Y. Q., Cai, Y. F. & Feng, H. Z. 2009. New carbon isotope stratigraphy of the Ediacaran–Cambrian boundary interval from SW China: implications for global correlation. Geological Magazine 146, 465–84.Google Scholar
Li, G., Steiner, M., Zhu, X., Yang, A., Wang, H., & Erdtmann, B.-D. 2007. Early Cambrian metazoan fossil record of South China: Ggneric diversity and radiation patterns. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 229–49.CrossRefGoogle Scholar
Li, G. X., Zhao, D., Gubanov, A., Zhu, M. Y. & Na, L. 2011. Early Cambrian mollusk Watsonella crosbyi: a potential GSSP index fossil for the base of Cambrian Stage 2. Acta Geologica Sinica 8, 309–19.CrossRefGoogle Scholar
Magaritz, M., Holser, W. T. & Kirschvink, J. L. 1986. Carbon isotope events across the Precambrian/Cambrian boundary on the Siberian Platform. Nature 320, 258–9.Google Scholar
Magaritz, M., Latham, A. J., Kirschvink, J. L., Zhuravlev, A. Yu. & Rozanov, A. Yu. 1991. Precambrian–Cambrian boundary problem I: carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco. Geology 19, 847–50.Google Scholar
Maloof, A. C., Porter, S. H., More, J. L., Dudás, F. Ö., Bowring, S. A., Higgins, J. A., Fike, D. A. & Eddy, M. P. 2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin 122, 1731–74.Google Scholar
Missarzhevsky, V. V. 1989. Oldest Skeletal Fossils and Stratigraphy of Precambrian and Cambrian Boundary Beds. Academy of Sciences of the USSR, Order of the Red Banner of Labour Geological Institute 443, 237 pp. (in Russian).Google Scholar
Moczydłowska, M. 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian–Cambrian boundary in southeastern Poland. Fossils & Strata 29, 1127.Google Scholar
Moczydłowska, M. & Vidal, G. 1988. How old is the Tommotian? Geology 16, 166–8.Google Scholar
Narbonne, G. M., Myrow, P. M., Landing, E. & Anderson, M. M. 1987. A candidate stratotype for the Precambrian–Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences 24, 1277–93.CrossRefGoogle Scholar
Ogg, J. G., Ogg, G. & Gradstein, F. 2008. The Concise Geologic Time Scale. Cambridge: Cambridge University Press, 177 pp.Google Scholar
Parkhaev, P. Yu. & Karlova, G. A. 2011. Taxonomic revision and evolution of Cambrian mollusks of the genus Aldanella Vostokova, 1962 (Gastropoda: Archaeobranchia). Paleontological Journal 45, 1145–205.CrossRefGoogle Scholar
Parkhaev, P. Yu., Karlova, G. A. & Rozanov, A. Yu. 2011. Taxonomy, stratigraphy and biogeography of Aldanella attleborensis—a possible candidate for defining the base of Cambrian Stage 2. Museum of Northern Arizona Bulletin 67, 298300.Google Scholar
Peng, S. C. & Babcock, L. E. 2011. Continuing progress on chronostratigraphic subdivision of the Cambrian System. Czech Bulletin of Geosciences 86, 391–6.CrossRefGoogle Scholar
Qian, Y. & Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata 24, 1156.Google Scholar
Remane, J., Bassett, M. G., Cowie, J. W., Gohrbandt Land, H. R., Michelsen, O. & Naiwen, W. 1996. Revised guidelines for the establishment of global chronostratigraphic standards by the international Commission on Stratigraphy (ICS). Episodes 19 (3), 114.Google Scholar
Rogov, V. I., Karlova, G. A., Marusin, V. V., Kochnev, B. B., Nagovitsin, K. E. & Grazhdankin, D. V. 2015. Duration of the first biozone in the Siberian hypostratotype of the Vendian. Russian Geology and Geophysics 56, 573–83.Google Scholar
Rozanov, A. Yu., Khomentovsky, V. V. & Shabanov, Ya. Yu. 2008. To the problem of stage division of the Lower Cambrian. Stratigraphy and Geological Correlation 16, 119.Google Scholar
Rozanov, A. Yu. & Missarzhevsky, V. V. 1966. Biostratigrafiya i fauna nizhnikh gorizontov kembriya. Akademiya Nauk SSSR, Geologicheskij Institut, Trudy 148, 126 (in Russian).Google Scholar
Rozanov, A. Yu., Missarzhevsky, V. V., Volkova, N. A., Voronova, L. G., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pykhova, N. G. & Sidorov, A.D. 1969. The Tommotian Stage and the Cambrian Lower Boundary Problem. Moscow, Nauka, 359 pp. (in English, 1981, New Delhi: India Amerind Publishing Co.)Google Scholar
Rozanov, A. Yu. & Zhuravlev, A. Yu. 1992. The Lower Cambrian fossil record of the Soviet Union. In Origin and Early Evolution of the Metazoa (eds Lipps, J. H. & Signor, P. W.), pp. 205–82. New York: Plenum Press.CrossRefGoogle Scholar
Salvador, A. (ed.) 1994. International Stratigraphic Guide. A Guide to Stratigraphic Classification, Terminology, and Procedure. Second Edition. International Union of Geologists and Geological Society of America, 214 pp.Google Scholar
Steiner, M., Li, G. & Ergaliev, G. 2011. Toward a subdivision of the traditional ‘Lower Cambrian’. Museum of Northern Arizona Bulletin 67, 306–8.Google Scholar
Steiner, M., Li, G. X., Qian, Y., Zhu, M. Y. & Erdtmann, B.-D. 2007. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology 254, 6799.CrossRefGoogle Scholar
Yang, B., Steiner, M., Li, G. & Keupp, H. 2014. Terreneuvian small shelly faunas of east Yunnan (South China) and their biostratigraphic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 398, 2858.Google Scholar
Zhang, W. T. 2003. Cambrian biostratigraphy of China. In Biostratigraphy of China (eds Zhang, W. T., Chen, P. J. & Palmer, A. R.), p. 55119. Beijing: Sciences Press.Google Scholar
Zhu, M. Y., Li, G. & Zhang, J. 2001. New C isotope stratigraphy from southwest China: implications for the placement of the Precambrian–Cambrian boundary on the Yangtze Platform and global correlation: comment. Geology 29, 871.2.0.CO;2>CrossRefGoogle Scholar
Zhu, M. Y., Yang, A. B., Li, G. & Yuan, J. J. 2008. A working model for subdivision of the lower half Cambrian. In The Siberian Platform, Western Yakutia. 13th International Field Conference of the Cambrian Stage Subdivision Working Group (ed Voronin, T. A.), pp. 204, 205. Novosibirsk: SNIGGIMS.Google Scholar
Zhuravlev, A. Yu., Liñan, E., Gámez Vintaned, J. A., Debrenne, F. & Fedorov, A. B. 2012. New finds of skeletal fossils in the terminal Proterozoic and of the Siberian Platform and Spain. Palaeontologica Polonica 57, 205–26.Google Scholar
Zhuravlev, A. Yu. & Riding, R. (eds) 2001. The Ecology of the Cambrian Radiation. New York: Columbia University Press, 525 pp.Google Scholar