Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T03:51:53.777Z Has data issue: false hasContentIssue false

Coral faunal turnover through the Ordovician–Silurian transition in South China and its global implications for carbonate stratigraphy and macroevolution

Published online by Cambridge University Press:  03 June 2016

GUANGXU WANG*
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
RENBIN ZHAN
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
BING HUANG
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China
IAN G. PERCIVAL
Affiliation:
Geological Survey of New South Wales, 947–953 Londonderry Road, Londonderry, New South Wales 2753, Australia
*
Author for correspondence: [email protected]

Abstract

A complete coral succession through the Ordovician–Silurian transition in South China reveals an adaptive phase during the Hirnantian glaciation, followed by an early survival phase and finally a late survival phase that persisted into the early Silurian. We demonstrate that a coral assemblage of latest Hirnantian to earliest Silurian age, remarkably similar to those from the Edgewood fauna known from Laurentia, occurs stratigraphically above the typical Hirnantian fauna. This, in combination with other evidence (e.g. brachiopods, lithology and chemostratigraphy), suggests the Edgewood fauna probably post-dated the early–middle Hirnantian glaciation, rather than being coeval with the older glacial-related Hirnantia fauna. Evidence from South China shows that the Edgewood fauna appeared in the very latest Hirnantian and extended into the middle Rhuddanian, considerably younger than previously believed. Such a new correlation necessitates a reassessment of the influence of the end-Ordovician glaciation on biotas. We argue that this major glaciation probably would have substantially affected the ecosystem even in tropical regions, as shown by the development there of the Hirnantia fauna or, alternatively, the presence of a conspicuous stratigraphic hiatus. This suggests a surprisingly rapid biotic recovery during the subsequent postglacial transgression, represented by the flourishing of comparatively diverse shelly faunas (e.g. the Edgewood fauna and the Cathaysiorthis brachiopod fauna) in nearshore shallow water environments from Laurentia to eastern peri-Gondwana terranes or blocks (e.g. South China).

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amsden, T. W. 1974. Late Ordovician and Early Silurian articulate brachiopods from Oklahoma, southwestern Illinois, and eastern Missouri. Oklahoma Geological Survey Bulletin 119, 1154.Google Scholar
Amsden, T. W. & Barrick, J. E. 1986. Late Ordovician-Early Silurian strata in the central United States and the Hirnantian Stage. Oklahoma Geological Survey Bulletin 139, 195.Google Scholar
Bergström, S. M., Eriksson, M. E., Young, S. A., Ahlberg, P. & Schmitz, B. 2014. Hirnantian (latest Ordovician) δ13C chemostratigraphy in southern Sweden and globally: a refined integration with the graptolite and conodont zone successions. GFF 136, 355–86.Google Scholar
Bergström, S. M., Kleffner, M. & Schmitz, B. 2012. Late Ordovician-Early Silurian δ13C chemostratigraphy in the Upper Mississippi Valley: implications for chronostratigraphy and depositional interpretations. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 102, 159–78.CrossRefGoogle Scholar
Bergström, S. M., Saltzman, M. M. & Schmitz, B. 2006. First record of the Hirnantian (Upper Ordovician) δ13C excursion in the North American Midcontinent and its regional implications. Geological Magazine 143, 657–78.CrossRefGoogle Scholar
Brenchley, P. J. & Cocks, L. R. M. 1982. Ecological associations in a regressive sequence: the latest Ordovician of the Oslo-Asker district, Norway. Palaeontology 25, 783815.Google Scholar
Butcher, A., Mikulic, D. G. & Kluessendorf, J. 2010. Late Ordovician–Early Silurian chitinozoans from north-eastern and western Illinois, USA. Review of Palaeobotany and Palynology 159, 8193.Google Scholar
Candela, Y. 2015. Evolution of Laurentian brachiopod faunas during the Ordovician Phanerozoic sea level maximum. Earth-Science Reviews 141, 2744.CrossRefGoogle Scholar
Chen, X., Rong, J. Y., Fan, J. X., Zhan, R. B., Mitchell, C. E., Harper, D. A. T., Melchin, M. J., Peng, P. A., Finney, S. C. & Wang, X. F. 2006. The Global Boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System). Episodes 29, 183–96.CrossRefGoogle Scholar
Chen, X., Rong, J. Y., Mitchell, C. E., Harper, D. A. T., Fan, J. X., Zhan, R. B., Zhang, Y. D., Li, R. Y. & Wang, Y. 2000. Late Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, South China, with a global correlation. Geological Magazine 137, 623–50.Google Scholar
Cocks, L. R. M. & Cooper, R. A. 2004. Late Ordovician (Hirnantian) shelly fossils from New Zealand and their significance. New Zealand Journal of Geology and Geophysics 47, 7180.Google Scholar
Cocks, L. R. M. & Fortey, R. A. 2002. The palaeogeographical significance of the latest Ordovician fauna from the Panghsa-pye Formation of Burma. Special Papers in Palaeontology 67, 5776.Google Scholar
Delabroye, A. & Vecoli, M. 2010. The end-Ordovician glaciation and the Hirnantian Stage: a global review and questions about Late Ordovician event stratigraphy. Earth-Science Reviews 98, 269–82.Google Scholar
Demski, M. W., Wheadon, B. J., Stewart, L. A., Elias, R. J., Young, G. A., Nowlan, G. S. & Dobrzanski, E. P. 2015. Hirnantian strata identified in major intracratonic basins of central North America: implications for uppermost Ordovician stratigraphy. Canadian Journal of Earth Sciences 52, 6876.CrossRefGoogle Scholar
Elias, R. J. 1982. Latest Ordovician solitary rugose corals of eastern North America. Bulletins of American Paleontology 81, 1116.Google Scholar
Elias, R. J. & Young, G. A. 1992. Biostratigraphy and biogeographic affinities of latest Ordovician to earliest Silurian corals in the east-central United States. In Global Perspectives on Ordovician Geology (eds Webby, B. D. & Laurie, J. R.), pp. 205–14. Rotterdam: A. A. Balkema.Google Scholar
Elias, R. J. & Young, G. A. 1998. Coral diversity, ecology, and provincial structure during a time of crisis: the latest Ordovician to earliest Silurian Edgewood Province in Laurentia. Palaios 13, 98112.CrossRefGoogle Scholar
Elias, R. J., Young, G. A., Lee, D. J. & Bae, B. Y. 2013a. Coral biogeography in the Late Ordovician (Cincinnatian) of Laurentia. In Early Palaeozoic Biogeography and Palaeogeography (eds Harper, D. A. T. & Servais, T.), pp. 97115. Geological Society, London, Memoir no. 38.Google Scholar
Elias, R. J., Young, G. A., Stewart, L. A., Demski, M. W., Porter, M. J., Lukie, T. D., Nowlan, G. S. & Dobrzanski, E. P. 2013b. Field Trip Guidebook FT-C5 /Open File OF 2013-1–Ordovician-Silurian boundary interval in the Williston Basin outcrop belt of Manitoba: a record of global and regional environmental and biotic change. Winnipeg: Geological Association of Canada–Mineralogical Association of Canada Joint Annual Meeting, 49 pp.Google Scholar
Gao, J. G. 1987. Early Silurian rugose coral faunas and Silurian stratigraphy in the Tongxin-Zhongning area of Ningxia. In Paleozoic Biostratigraphy and Tectonic Evolution of the Alxa Massif Margin (eds Zhu, H., Zheng, S. C. & He, X. Y.), pp. 122–43. Wuhan: Wuhan College of Geology Press (in Chinese with English abstract).Google Scholar
Harper, D. A. T., Hammarlund, E. U. & Rasmussen, C. M. Ø. 2014. End Ordovician extinctions: a coincidence of causes. Gondwana Research 25, 1294–307.Google Scholar
Harper, D. A. T., Rasmussen, C. M. Ø., Liljeroth, M., Blodgett, R. B., Candela, Y., Jin, J., Percival, I. G., Rong, J. Y., Villas, E. & Zhan, R. B. 2013. Biodiversity, biogeography and phylogeography of Ordovician rhynchonelliform brachiopods. In Early Palaeozoic Biogeography and Palaeogeography (eds Harper, D. A. T. & Servais, T.), pp. 127–44. Geological Society, London, Memoir no. 38.Google Scholar
Harper, D. A. T. & Rong, J. Y. 2008. Completeness of the Hirnantian brachiopod record: Spatial heterogeneity through the end Ordovician extinction event. Lethaia 41, 195197.CrossRefGoogle Scholar
Harper, D. A. T. & Williams, S. H. 2002. A relict Ordovician brachiopod fauna from the Parakidograptus acuminatus Biozone (lower Silurian) of the English Lake District. Lethaia 35, 71–8.CrossRefGoogle Scholar
He, X. Y. & Chen, J. Q. 1999. Early Silurian rugose coral fauna of Tewo area, West Qinling. Acta Palaeontologica Sinica 38, 423–34 (in Chinese with English abstract).Google Scholar
He, X. Y., Chen, J. Q. & Xiao, J. Y. 2007. Combination features, paleobiogeographic affinity and mass extinction of the latest Ordovician (Hirnantian) rugosan fauna from northern Guizhou, China. Acta Geologica Sinica 81, 2341.Google Scholar
Koren, T. N. & Sobolevskaya, R. F. 2008. The regional stratotype section and point for the base of the Hirnantian Stage (the uppermost Ordovician) at Mirny Creek, Omulev Mountains, Northeast Russia. Estonian Journal of Earth Sciences 57, 110.CrossRefGoogle Scholar
Loydell, D. K., Mallett, A., Mikulic, D. G., Kluessendorf, J. & Norby, R. D. 2002. Graptolites from near the Ordovician–Silurian boundary in Illinois and Iowa. Journal of Paleontology 76, 134–7.2.0.CO;2>CrossRefGoogle Scholar
McLean, R. A. 1974. The rugose coral genera Streptelasma Hall, Grewingkia Dyboski and Calostylis Lindström from the Lower Silurian of New South Wales. Proceedings of the Linnean Society of New South Wales 99, 3653.Google Scholar
McLean, R. A. & Copper, P. 2013. Rugose corals from the Early Silurian (late Rhuddanian–Telychian) post-extinction recovery interval on Anticosti Island, eastern Canada. Palaeontographica Canadiana 33, 1263.Google Scholar
Neuman, B. E. E. 1969. Upper Ordovician streptelasmatid corals from Scandinavia. Bulletin of the Geological Institutions of the University of Uppsala, New Series 1, 173.Google Scholar
Neuman, B. E. E. 1975. New lower Paleozoic streptelasmatid corals from Scandinavia. Norsk Geologisk Tidsskrift 55, 335–59.Google Scholar
Owen, A. W., Harper, D. A. T. & Rong, J. Y. 1991. Hirnantian trilobites and brachiopods in space and time. In Advances in Ordovician Geology (eds Barnes, C. R. & Williams, S. H.), pp. 179–90. Geological Survey of Canada, Paper 90–9.Google Scholar
Rong, J. Y., Chen, X., Wang, Y., Zhan, R. B., Liu, J. B., Huang, B., Tang, P., Wu, R. C. & Wang, G. X. 2011. Northward expansion of Central Guizhou Oldland through the Ordovician and Silurian transition: evidence and implications. Science in China Series D, Earth Sciences 41, 1407–15 (in Chinese).Google Scholar
Rong, J. Y., Chen, X., Zhan, R. B., Fan, J. X., Wang, Y., Zhang, Y. D., Li, Y., Huang, B., Wu, R. C., Wang, G. X. & Liu, J. B. 2010. New observation on Ordovician–Silurian boundary strata of southern Tongzi Country, northern Guizhou, Southwest China. Journal of Stratigraphy 34, 337–48 (in Chinese with English abstract).Google Scholar
Rong, J. Y. & Harper, D. A. T. 1988. A global synthesis of the latest Ordovician Hirnantian brachiopod faunas. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 383402.Google Scholar
Rong, J. Y., Huang, B., Zhan, R. B. & Harper, D. A. T. 2013. Latest Ordovician and earliest Silurian Brachiopods succeeding the Hirnantia Fauna in Southeast China. Special Papers in Palaeontology 90, 1142.Google Scholar
Rong, J. Y. & Li, R. Y. 1999. A silicified Hirnantia fauna (latest Ordovician brachiopods) from Guizhou, southwest China. Journal of Paleontology 73, 831–49.Google Scholar
Rong, J. Y. & Zhan, R. B. 2004. Survival and recovery of brachiopods in Early Silurian of South China. In Mass Extinction and Recovery – Evidences from the Palaeozoic and Triassic of South China (eds Rong, J. Y. & Fang, Z. J.), pp. 97126. Hefei: University of Science and Technology of China Press (in Chinese with English abstract).Google Scholar
Savage, T. E. 1916. Alexandrian rocks of northeastern Illinois and eastern Wisconsin. Bulletin of the Geological Society of America 27, 305–24.Google Scholar
Savage, T. E. 1918. Correlation of the early Silurian rocks in the Hudson Bay Region. Journal of Geology 26, 334–40.CrossRefGoogle Scholar
Sutcliffe, O. E., Harper, D. A. T., Salem, A. A., Whittington, R. J. & Craig, J. 2001. The development of an atypical Hirnantia-brachiopod Fauna and the onset of glaciation in the late Ordovician of Gondwana. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 92, 114.Google Scholar
Wang, G. X. 2014. Coral faunas across the Ordovician-Silurian transition of South China: implications on paleobiogeography and macroevolution. PhD thesis, University of Chinese Academy of Sciences, Beijing. Unpublished thesis.Google Scholar
Wang, C. Y. & Aldridge, R. J. 2010. Silurian conodonts from the Yangtze Platform, south China. Special Papers in Palaeontology 83, 1136.Google Scholar
Wang, G. X. & Zhan, R. B. 2014. A new species of Paramplexoides (rugosans) from the Hirnantian Kuanyinchiao Formation of northern Guizhou, South China. In IGCP 591 Field Workshop 2014, Kunming China, 12–21 August 2014, Extended Summary (eds Zhan, R. B. & Huang, B.), pp. 178–81. Nanjing: Nanjing University Press.Google Scholar
Wang, G. X. & Zhan, R. B. 2015. A new species of middle Rhuddanian Halysites (Tabulata) from Meitan, northern Guizhou, Southwest China. Estonian Journal of Earth Sciences 64, 105–9.Google Scholar
Wang, G. X., Zhan, R. B., Deng, Z. Q. & Yu, C. M. 2014. Latest Ordovician and earliest Silurian tabulate corals of South China. GFF 136, 290–93.Google Scholar
Wang, G. X., Zhan, R. B. & Percival, I. G. 2016. New data on Hirnantian (latest Ordovician) postglacial carbonate rocks and fossils in northern Guizhou, Southwest China. Canadian Journal of Earth Sciences, published online 23 December 2015. doi: 10.1139/cjes-2015-0197.Google Scholar
Wang, G. X., Zhan, R. B., Percival, I. G., Huang, B., Li, Y. & Wu, R. C. 2015. Late Hirnantian (latest Ordovician) carbonate rocks and shelly fossils in Shiqian, northeastern Guizhou, Southwest China. Newsletters on Stratigraphy 48, 241–52.Google Scholar
Webby, B. D. 1992. Global biogeography of Ordovician corals and stromatoporoids. In Global Perspectives on Ordovician Geology (eds Webby, B. D. & Laurie, J. R.), pp. 261–76. Rotterdam: A. A. Balkema.Google Scholar
Zhang, S. X. & Barnes, C. R. 2002. A new Llandovery (Early Silurian) conodont biozonation and conodonts from the Becscie, Merrimack, and Gun River Formations, Anticosti Island, Québec. Journal of Paleontology 57, 146.Google Scholar