Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T06:47:13.322Z Has data issue: false hasContentIssue false

Chert appearance in the Cueva-Bedón carbonate platform (upper Cretaceous, northern Spain)

Published online by Cambridge University Press:  01 May 2009

J. Elorza
Affiliation:
Universidad del Pais Vasco, Area de Petrología, Apart 644, 48080-Bilbao, Spain
F. Garcia-Garmilla
Affiliation:
Universidad del Pais Vasco, Area de Petrología, Apart 644, 48080-Bilbao, Spain

Abstract

Nodular chert from the Cueva-Bedón carbonate platform (late Turonian-earliest Coniacian) occurs above the type 1 sequence boundary and in association with a transgressive systems tract deposit. It formed by selective replacement of grainstones-packstones, and Thalassinoides burrow fillings. Other minor types of selective silicification include the replacement of anhydrite nodules, forming quartz geodes, and the partial or total replacement of oysters and inoceramids. The chert nodules consist predominantly of microquartz with volumetrically minor fibrous quartz (length-fast chalcedony) and megaquartz. The silica has a mainly biogenic source (siliceous sponge spicules and radiolarians). Lepisphere textures that are indicative of an intermediate opal-CT precursor are evident in chert nodules, which indicates the chert formed by a maturation process from opalA to opal-CT to quartz. The δ 18O values of microquartz suggest a precipitation from marine fluids. The fabric of quartz geodes consists of irregular bands of heterometric megaquartz, quartzine and lutecite spherulites, and a well developed band of petaloidal megaquartz that contains small anhydrite inclusions. Bivalve shells are replaced mainly by fibrousquartz (quartzine-lutecite), which forms extensive beekite rings. The silica source of the replaced fossils is also biogenic, but silicification couldhave occurred by direct quartz replacement without an opal-CT precursor. Field and petrographic evidence indicate that silicification was an early diagenetic process that affected both uncompacted and compacted sediments, andwas inhibited when the dolomitization began. There seems to exist a syncrony in age (late Turonian-earliest Coniacian) between the nodular chert in the Cueva-Bedón carbonate platform and the bedded and nodular chert ofthe Plentzia carbonate turbidites in the deeper Basque Arc.

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiot, M. 1982. El Cretócico superior en la RegiFón Navarro-Cántabra. In El Cretácico de España, pp. 88111. Madrid: Universidad Complutense.Google Scholar
Amiot, M., Floquet, M. & Mathey, B. 1983. Relations entre les trois domaines de sedimentation du Cretace Superieur. In Vue sur le Crétacé Basco-Cantabrique et Nord-lberique. Memoires Géologiques de L'Université de Dijon, vol. 9, pp. 169–76. Dijon.Google Scholar
Badillo, J. M. & Garcia-Garmilla, F. 1989 a. The basal unconformity of the upper Albian Black Flysch: genesis and petrology (Basque Coast, Northern Spain). E.U.G. Vth Meeting, Terra Abstracts 1, 414–15.Google Scholar
Badillo, J. M. & Garcia-Garmilla, F. 1989 b. Petrology of the terrigenous middle-upper Albian Series (Basque Coast, Northern Spain). 10thI.A.S. Regional Meeting, Budapest, Abstracts 56.Google Scholar
Banks, N. G. 1970. Nature and origin or early and late cherts in theLeadville Limestone, Colorado. Geological Society of America Bulletin 81, 3033–48.CrossRefGoogle Scholar
Bustillo, M. A. & Ruiz-Ortiz, P. A. 1987. Chert occurrences in carbonate turbidites: examples from the Upper Jurassic of the Betic Mountains (southern Spain). Sedimentology 34, 611–21.CrossRefGoogle Scholar
Chowns, T. M. & Elkins, J. E. 1974. The origin of quartz geodes and cauliflower cherts through the silicification of anhydrite nodules. Journal of Sedimentary Petrology 44, 885903.Google Scholar
Coniglio, M. 1987. Biogenic chert in the Cow Head Group (Cambro-Ordovician), western Newfoundland. Sedimentology 34, 813–23.CrossRefGoogle Scholar
Elorza, J. & Bustillo, M. A. 1989. Early and late diagenetic chert in carbonate turbidites of the Senonian flysch, N.E. Bilbao, Spain). In Siliceous Deposits of the Tethys and Pacific Regions (eds Hein, J. R., and Obradovic, J.), pp. 93105. New York: Springer-Verlag.CrossRefGoogle Scholar
Elorza, J. & Fallick, A. E. 1991. Oxygen isotopic data of the early and late diagenetic chert in carbonate turbidites (Upper Cretaceous), Northeast Bilbao, Spain. Geogaceta 10, 7981.Google Scholar
Elorza, J. & Garcia-Garmilla, F. 1991. The Cueva-Bedón carbonate platform: sedimentary and petrological evidence for depositional sequences (Upper Cretaceous, Basque-Cantabrian Region, Northern Spain. 12th I.A.S. Regional Meeting, Bergen. Abstract Book 15.Google Scholar
Elorza, J., Garcia-Garmilla, F., Arriortua, M. I. & Bustillo, M. A. 1991. Chert in Marine Environments. In Marine and Continental Facies with Siliceous Sedimentary Rocks (eds Elorza, J., Bustillo, M. A. et al.), pp. 192. VIth International Flint Symposium, Madrid, Excursion Guidebook.Google Scholar
Elorza, J. & Rodriguez-Lazaro, J. 1984 a. Late cretaceous quartz geodes after anhydrite from Burgos, Spain. Geological Magazine 121, 107–13.CrossRefGoogle Scholar
Elorza, J. & Rodriguez-Lazaro, J. 1984 b. Existencia de estructuras nodulosas de celestina afectadas por silicificatión en el Valle de Losa (N. Burgos). Estudios Geológicos 40, 41–8.CrossRefGoogle Scholar
Elorza, J. & Rodriguez-Lazaro, J. 1987. Quartz geodes with celestite and calcite after anhydrite from Langre (Santander, Spain). In Proceedings of the International Meeting ‘Geochemistry of the Earth Surface and Processes of Mineral Formation’, Granada (eds Rodriguez-Clemente, R. and Tardy, Y.), pp. 837–47. Madrid and Paris: C.S.I.C. and C.N.R.S.Google Scholar
Feuillée, P. & Rat, P. 1971. Structures et paléogéographies pyrénéo-cantabriques. In Histoire Structurale du Golfe de Gascogne, pp. V.l–V.1.48. Paris: Technip.Google Scholar
Floquet, M. 1991. La Plate-forme Nord-Castillane au Crétacé Superieur (Espagne). Arriére-pays ibérique de la marge passive basco-cantabrique. Sédimentation et Vie. Mémoires Geologiques de L' Université de Dijon 14, 925 pp. Dijon.Google Scholar
Floquet, M. 1992. Outcrop sequence stratigraphy in a ramp setting: The late Cretaceous-Early Palaeogene deposits of the Castilian ramp (Spain). Field Trip Guide Book–International Symposium on ‘Sequence Stratigraphy of Mesozoic-Cenozoic European Basins. Dijon: CNRS-IFP.Google Scholar
Floquet, M., Alonso, A. & Melendez, A. 1982. El CretácicoSuperior en la Meseta norcastellana. In El Cretácico de España, pp. 387453. Madrid: Universidad Complutense.Google Scholar
Friedman, G. M. & Shukla, V. 1980. Significance of authigenic quartz euhedra after sulfates: example from the Lockport Formation (middle Silurian) of New York. Journal of Sedimentary Petrology 50, 12991304.Google Scholar
Gao, G. & Land, L. S. 1991. Nodular chert from the Arbuckle Group. Slick Hills, SW Oklahoma: a combined field, petrographic and isotopic study. Sedimentology 38, 857–70.CrossRefGoogle Scholar
Geeslin, J. H. & Chafetz, H. S. 1982. Ordovician Aleman Ribbon Cherts: an example of silicification prior to carbonate lithification. Journal of Sedimentary Petrology 52, 1283–93.Google Scholar
Hein, J. R. & Karl, S. M. 1983. Comparisons between open-ocean and continental margin chert sequences. In Siliceous Deposits of the Pacific Region (eds lijima, A., Hein, J. R. and Siever, R.), pp. 2544. Amsterdam: Elsevier.CrossRefGoogle Scholar
Hein, J. R., Vallier, T. L. & Allan, M. A. 1981. Chert petrography and geochemistry, mid-Pacific Mountains and Hess Rise, DSDP Leg 62. Initial Report, Deep Sea Drilling Project 62, 711–48.Google Scholar
Hesse, R. 1987. Selective and reversible carbonate-silica replacements in lower Cretaceous carbonate-bearing turbidites of the Eastern Alps. Sedimentology 34, 1055–77.CrossRefGoogle Scholar
Hesse, R. 1989. Silica Diagenesis: Origin of Inorganic and Replacement Cherts. Earth-Sciences Reviews 26, 253–84.CrossRefGoogle Scholar
I.G.M.E., 1978. Mapa Geológico de España E 1:50.000. Hoja no. 84 (Espinosa de los Monteros). Madrid: Servicio de Publicaciones, Ministerio de Industria y Energia.Google Scholar
Jenkyns, H. C. 1980. Cretaceous anoxie events from continents to oceans. Journal of the Geological Society, London 137, 171–88.CrossRefGoogle Scholar
Jones, D. L. & Knauth, L. P. 1979. Oxygen isotopic and petrographic evidence relevant to the origin of the Arkansas novaculite. Journal of Sedimentary Petrology 49, 581–98.Google Scholar
Keene, J. B. 1975. Cherts and porcellanites from the North Pacific, DSDP Leg 32. Initial Report, Deep Sea Drilling Project 32, 429507.Google Scholar
Kolodny, Y. 1983. The origin of cherts as members of high productivity sequences: isotopic evidence. In The scientific study of flint and chert (eds Sieveking, G. de C. and Hart, M. B.), pp. 5562. Cambridge: Cambridge University Press.Google Scholar
Maliva, R. G. 1987. Quartz geodes: early diagenetic silicified anhydrite nodules related to dolomitization. Journal of Sedimentary Petrology 57, 1054–9.Google Scholar
Maliva, R. G. & Siever, R. 1988 a. Mechanism and controls of silicification of fossils in limestones. Journal of Geology 96, 387–98.CrossRefGoogle Scholar
Maliva, R. G. & Siever, R. 1988 b. Pre-Cenozoic nodular cherts: evidencefor opal-CT precursors and direct quartz replacement. American Journal of Science 288, 798809.CrossRefGoogle Scholar
Maliva, R. G. & Siever, R. 1988 c. Diagenetic replacement controlled by force of crystallization. Geology 16, 688–91.2.3.CO;2>CrossRefGoogle Scholar
Mathey, B. 1982. Cretácico superior del Arco Vasco. In El Cretácico de España, pp. 111–36. Madrid: Universidad Complutense.Google Scholar
Mathey, B. 1987. Les flyschs crétacé supérieur des Pyrénées basques. Memoires Geologiques de L'Universite de Dijon 12, 399 pp. Dijon.Google Scholar
Meyers, W. J. 1977. Chertification in the Mississippian Lake Valley Formation, Sacramento Mountains, New Mexico. Sedimentology 24, 75105.CrossRefGoogle Scholar
Milliken, K. L. 1979. The Silicified Evaporite Syndrome-two aspects of silicification history of former evaporite nodules from Southern Kentucky and Northern Tennessee. Journal of Sedimentary Petrology 49, 245–56.Google Scholar
Mortimore, R. N. & Wood, C. J. 1986. The distribution of flint in the English Chalk, with particular reference to the ‘Brandon Flint Series’ and the High Turonian Flint Maximum. In The scientific study of flint and chert (eds Sieveking, G. de C. and Hart, M. B.), pp. 720. Cambridge: Cambridge University Press.Google Scholar
Murchey, B. L. & Jones, D. L. 1992. A mid-Permian chert event: widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins. Palaeogeography, Palaeoclimatology, Palaeoecology 96, 161174.CrossRefGoogle Scholar
Rat, P. 1959. Les Pays Crétacés Basco-Cantabriques (Espagne). Thése Facult' Université Dijon, vol. XVIII. Dijon: Presses Universitaires de France, 525 pp.Google Scholar
Renard, M. 1987. Enregistrements geochemiques (element-traces et isotopes stables) des cycles transgression-regression par les carbonates pelagiques au Cours du Crétacé. In Transgressions et Régressions au Crétacé. Mémoires Geologiques de L'Université de Dijon, vol. 11, pp. 125–42. Dijon.Google Scholar
Siedlecka, A. 1976. Silicified Precambrian nodules from Northern Norway: a preliminary report. Sedimentary Geology 16, 161–75.CrossRefGoogle Scholar
Siever, R. 1986. Oceanic silica geochemistry and nodular chert formation. Geological Society of America, Abstracts with Programs 18, 750.Google Scholar
Von Rad, U. & Rösch, H. 1974. Petrography and diagenesis ofdeep-sea cherts from the central Atlantic. In Pelagic Sediments: On Landand Under the Sea, vol. 1 (eds Hsü, K. J. and Jenkyns, H. C.), pp. 327–47. Special Publication, International Association of Sedimentology.Google Scholar
Von Rad, U., Riech, V. & Rösch, H. 1978. Silica diagenesis in conntinental margin sediments of Northern Africa. Initial Report, Deep Sea Drilling Project 41, 879905.Google Scholar
Wise, S. W. & Weaver, F. M. 1974. Chertification of oceanic sediments. In Pelagic Sediments: On Land and Under the Sea, vol. 1 (eds Hsü, K. J. and Jenkyns, H. C.), pp. 301–26. Special Publication International Association Sedimentology.Google Scholar
Wilgus, C. K., Hastings, B. S., Posamentier, H. W., Van Wagoner, J. C., Ross, C. A. & Kendall, C. G. 1988. Sea-Level Changes: An Integrated Approach. S.E.P.M. Special Publication, no. 42, 407 pp.CrossRefGoogle Scholar