Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T08:33:39.249Z Has data issue: false hasContentIssue false

Chemical and stable isotope fractionation in manganese oxide—phosphorite mineralization, Timna Valley, Israel

Published online by Cambridge University Press:  01 May 2009

Miryam Bar-Matthews
Affiliation:
Geological Survey of Israel, 30 Malchei Israel Street, Jerusalem 95501, Israel
Alan Matthews
Affiliation:
Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel

Abstract

Element, carbon and oxygen isotope fractionations have been studied in laminated deposits, manganese nodules and phosphorite lenses in clastic sediments of the Cambrian Timna Formation, southern Israel. Comparisons of element abundances show that only manganese, phosphorus and uranium were mobilized and concentrated during diagenesis: element fractionations among the diagenetic manganese components particularly resemble those observed in present-day suboxic pelagic marine sediments. Epigenetic processes involving reducing solutions reversed the diagenetic geochemical trends, with the redox-sensitive elements manganese and uranium showing considerable depletions in nodules, and iron and lead showing corresponding enrichments. The manganese oxides of nodules have calculated δ18O compositions varying from –1.6 to 3.1 ‰. These compositions are significantly lower than a δ18O value of 7.9 ‰ obtained for the manganese oxides of an ocean floor nodule and are taken to largely represent temperature differences between the ocean floor and the shallow marine Timna conditions. Slight decreases in δ18O accompany the transformation from diagenetic type A to epigenetic type B manganese nodules; corresponding shifts to lower δ18O are also inferred for the structural carbonate of apatites. Such shifts are compatible with re-equilibration accompanying a slight temperature increase and/or low temperature meteoric-water alteration. δ13C values of –7 to –12‰ obtained for the apatites of laminated deposits and phosphorite lenses are consistent with phosphorite diagenesis in suboxic to anoxic pore-waters. Early diagenetic redox conditions are indicated to be major controls governing the development of the assemblages.

Type
Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baturin, G. N. 1982. Phosphorite on the Sea Floor. 337 pp. Elsevier.Google Scholar
Bar-Matthews, M. 1987. The genesis of uranium in manganese and phosphorite assemblages, Timna Basin, Israel. Geological Magazine 124, 211–29.CrossRefGoogle Scholar
Chyi, M. S., Crerar, D. R., Carlson, R. W. & Stallard, R. F. 1984. Hydrothermal Mn-deposits of the Franciscan assemblage. II. Isotope and trace element geochemistry, and implications for hydrothermal convection at spreading centers. Earth and Planetary Science Letters 71, 3145.CrossRefGoogle Scholar
Clayton, R. N. & Mayeda, T. K. 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analyses. Geochimica et Cosmochimica Acta 27, 4352.CrossRefGoogle Scholar
Friedman, I. & O'Neil, J. R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. Data of Geochemistry Series, 6th ed. (ed. Fleischer, M.). United States Geological Survey Professional Paper 440KK.CrossRefGoogle Scholar
Fritz, P. & Smith, D. G. W. 1970. The isotopic composition of secondary dolomites. Geochimica et Cosmochimica Acta 34, 1161–73.CrossRefGoogle Scholar
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B. & Maynard, V. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: sub-oxic diagenesis. Geochimica et Cosmochimica Acta 43, 1075–90.CrossRefGoogle Scholar
Garlick, G. D. 1969. The stable isotopes of oxygen. In Handbook of Geochemistry (ed. Wedepohl, K. H.), Volume 8B, 127. Berlin: Springer-Verlag.Google Scholar
Garlick, G. D. 1974. The stable isotopes of oxygen, carbon and hydrogen in the marine environment. In The Sea, vol. 5 (ed. Goldberg, E. D.), pp. 393425. New York: Wiley Interscience.Google Scholar
Hem, J. D. 1972. Chemical factors that influence the availability of iron and manganese in aqueous systems. Geological Society of America Bulletin 83, 443–50.CrossRefGoogle Scholar
Klinkhammer, G. 1980. Early diagenesis in sediments from the eastern equatorial Pacific. II. Pore water metal results. Earth and Planetary Science Letters 40, 81101.CrossRefGoogle Scholar
Knauth, L. P. & Epstein, S. 1976. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochimica et Cosmochimica Acta 40, 1095–108.CrossRefGoogle Scholar
Knauth, L. P. & Lowe, D. R. 1978. Oxygen isotope geochemistry of cherts from the Onverwacht group (3.4 billion years), Transvaal, South Africa, with implica- tions for secular variations in the isotopic compaction of chert. Earth and Planetary Science Letters 41, 209–22.CrossRefGoogle Scholar
Li, Y. H., Bischoff, J. L. & Mathieu, G. 1969. The migration of manganese in the Arctic basin sediments. Earth and Planetary Science Letters 7, 265–70.Google Scholar
Longinelli, A. & Nuti, S. 1968. Oxygen isotopic composition of phosphorites from marine formations. Earth and Planetary Science Letters 5, 1316.CrossRefGoogle Scholar
Mackenzie, J. R. 1981. Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, UAE: a stable isotope study. Journal of Geology 89, 185–98.CrossRefGoogle Scholar
McArthur, J. M., Benmore, R. A., Coleman, M. L., Soldi, C., Yeh, H-W. & O'Brien, G. W. 1986. Stable isotope characterization of francolite formation. Earth and Planetary Science Letters 77, 2034.CrossRefGoogle Scholar
McCrea, J. M. 1950, On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18, 849–57.CrossRefGoogle Scholar
Matthews, A. & Katz, A. 1977. Oxygen isotope fractionation during the dolomitization of calcium carbonate. Geochimica et Cosmochimica Acta 41, 1431–38.CrossRefGoogle Scholar
Northrop, D. A. & Clayton, R. N. 1966. Oxygen isotope fractionation in systems containing dolomite. Journal of Geology 74, 174–96.CrossRefGoogle Scholar
O'Neil, J. R., Clayton, R. N. & Mayeda, T. K. 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics 51, 5547–58.CrossRefGoogle Scholar
Presley, B. J., Brooks, R. R. & Kaplan, I. R. 1967. Manganese and related elements in the interstitial water of marine sediments. Science 158, 906–9.CrossRefGoogle ScholarPubMed
Savin, S. M. & Epstein, S. 1970 A. The oxygen and hydrogen isotope geochemistry of ocean sediments and shales. Geochimica et Cosmochimica Acta 34, 4361.CrossRefGoogle Scholar
Savin, S. M. & Epstein, S. 1970 b. The oxygen and hydrogen isotope geochemistry of clay minerals. Geochimica et Cosmochimica Acta 34, 2342.Google Scholar
Sawlan, J. J. & Murray, J. W. 1983. Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments. Earth and Planetary Science Letters 64, 213–30.CrossRefGoogle Scholar
Segev, A. 1984. Lithostratigraphy and paleogeography of the marine Cambrian sequence in Southern Israel and Southwestern Jordan. Israel Journal of Earth Science 33, 2633.Google Scholar
Segev, A. & Steinitz, G. 1986. Dating of epigenetic manganese nodules and reset illites in the Cambrian Timna Formation, Israel. Terra Cognita 6, 112–3.Google Scholar
Segev, A. & Beyth, M. 1983. Preliminary report on the geology of the Timna Valley and its radioactive mineralization. Israel Geological Survey Report ZD 72/83, M.E. 2/83, 36ppGoogle Scholar
Shemesh, A., Kolodny, Y. & Luz, B. 1983. Oxygen isotope variations in phosphate of biogenic apatite. II. phosphorite rocks. Earth and Planetary Science Letters 64, 405–16.CrossRefGoogle Scholar
Shemesh, A., KOLODNY, Y. & Luz, B. 1988. Isotope geochemistry of oxygen and carbon in phosphate and carbonate of phosphorite francolite. Geochimica et Cosmochimica Acta 52, 2565–72.CrossRefGoogle Scholar
Sheppard, S. M. F. & Schwarcz, H. P. 1970. Fractionation of carbon and oxygen isotopes and magnesium between metamorphic calcite and dolomite. Contributions to Mineralogy and Petrology 26, 161–98.CrossRefGoogle Scholar
Veizer, J. 1983. Trace elements and isotopes in sedimentary carbonates. In Carbonates: Mineralogy and Chemistry (ed. Reeder, R. J.), pp. 265300. Mineralogical Society of America, Reviews in Mineralogy vol. 11.CrossRefGoogle Scholar
Veizer, J. & Hoefs, J. 1976. The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochimica et Cosmochimica Acta 40, 1387–95.CrossRefGoogle Scholar
Wilson, T. R. S., Thomson, J., Colley, S., Hydes, D. J., Higgs, N. C. & Sorensen, J. 1985. Early organic diagenesis: the significance of progressive subsurface oxidation fronts in pelagic sediments. Geochimica et Cosmochimica Acta 48, 811–22.CrossRefGoogle Scholar