Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T17:14:47.747Z Has data issue: false hasContentIssue false

Carbon isotope signatures of pedogenic carbonates from SE China: rapid atmospheric pCO2 changes during middle–late Early Cretaceous time

Published online by Cambridge University Press:  20 November 2013

XIANGHUI LI
Affiliation:
State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering Nanjing University, Nanjing 210093, China State Key Laboratory of Oil–Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
HUGH C. JENKYNS*
Affiliation:
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
CHAOKAI ZHANG
Affiliation:
State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering Nanjing University, Nanjing 210093, China
YIN WANG
Affiliation:
East China Mineral Exploration and Development Bureau of Jiangsu Province, Nanjing 210007, China
LING LIU
Affiliation:
East China Mineral Exploration and Development Bureau of Jiangsu Province, Nanjing 210007, China
KE CAO
Affiliation:
Qingdao Institute of Marine Geology, Qingdao 200092, China
*
§Author for correspondence: [email protected]

Abstract

Lower Cretaceous pedogenic carbonates exposed in SE China have been dated by U–Pb isotope measurements on single zircons taken from intercalated volcanic rocks, and the ages integrated with existing stratigraphy. δ13C values of calcretes range from –7.0‰ to –3.0‰ and can be grouped into five episodes of increasing–decreasing values. The carbon isotope proxy derived from these palaeosol carbonates suggests pCO2 mostly in the range 1000–2000 parts per million by volume (ppmV) at S(z) (CO2 contributed by soil respiration) = 2500 ppmV and 25°C during the Hauterivian–Albian interval (c. 30 Ma duration). Such atmospheric CO2 levels are 4–8 times pre-industrial values, almost double those estimated by geochemical modelling and much higher than those established from stomatal indices in fossil plants. Rapid rises in pCO2 are identified for early Hauterivian, middle Barremian, late Aptian, early Albian and middle Albian time, and rapid falls for intervening periods. These episodic cyclic changes in pCO2 are not attributed to local tectonism and volcanism but rather to global changes. The relationship between reconstructed pCO2 and the development of large igneous provinces (LIPs) remains unclear, although large-scale extrusion of basalt may well be responsible for relatively high atmospheric levels of this greenhouse gas. Suggested levels of relatively low pCO2 correspond in timing to intervals of regional to global enrichment of marine carbon in sediments and negative carbon isotope (δ13C) excursions characteristic of the oceanic anoxic events OAE1a (Selli Event), Kilian and Paquier events (constituting part of the OAE 1b cluster) and OAE1d. Short-term episodes of high pCO2 coincide with negligible carbon isotope excursions associated with the Faraoni Event and the Jacob Event. Given that episodes of regional organic carbon burial would draw down CO2 and negative δ13C excursions indicate the addition of isotopically light carbon to the ocean–atmosphere system, controls on the carbon cycle in controlling pCO2 during Early Cretaceous time were clearly complex and made more so by atmospheric composition also being affected by changes in silicate weathering intensity.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso-Zarza, A. M. 2003. Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth-Science Reviews 60, 261–98.CrossRefGoogle Scholar
Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Ando, A., Kaiho, K., Kawahata, H. & Kakegawa, K. 2008. Timing and magnitude of early Aptian extreme warming: Unraveling primary δ18O variation in indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 463–76.CrossRefGoogle Scholar
Ando, A. & Kakegawa, T. 2007. Carbon isotope records of terrestrial organic matter and occurrence of planktonic foraminifera from the Albian stage of Hokkaido, Japan: ocean-atmosphere δ13C trends and chronostratigraphic implications. Palaios 22, 417–32.CrossRefGoogle Scholar
Ando, A., Kakegawa, T., Takashima, R. & Saito, T. 2003. Stratigraphic carbon isotope fluctuations of detrital woody materials during the Aptian Stage in Hokkaido, Japan: comprehensive δ13C data from four sections of the Ashibetsu area. Journal of Asian Earth Sciences 21, 835–47.CrossRefGoogle Scholar
Andrews, J. E., Tandon, S. K. & Dennis, P. F. 1995. Concentration of carbon dioxide in the Late Cretaceous atmosphere. Journal of the Geological Society, London 152, 13.CrossRefGoogle Scholar
Arens, N. C., Jahren, A. H. & Amundson, R. 2000. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology 26, 137–64.2.0.CO;2>CrossRefGoogle Scholar
Arthur, M. A., Brumsack, H. J., Jenkyns, H. C. & Schlanger, S. O. 1990. Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequence. In Cretaceous Resource, Events, and Rhythms (eds Ginsburg, R. N. & Beaudoin, B.), pp. 75119. Dordrecht: Kluwer.Google Scholar
Arthur, M. A., Dean, W. E. & Schlanger, S. O. 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2: natural variations Archean to Present. In The Carbon Cycle and Atmospheric CO2 (eds Sundquist, E. T. and Broecker, W. S.), pp. 504–29. Monograph American Geophysical Union 32.Google Scholar
Beerling, D. J. & Berner, R. A. 2005. Feedbacks and the coevolution of plants and atmospheric CO2 . Proceedings of the National Academy of Sciences 102, 1302–5.CrossRefGoogle ScholarPubMed
Beerling, D. J., McElwain, J. C. & Osborne, C. P. 1998. Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations. Journal of Experimental Botany 49, 1603–7.Google Scholar
Beerling, D. J. & Royer, D. L. 2002. Reading a CO2 signal from fossil stomata. The New Phytologist 153, 387–97.CrossRefGoogle Scholar
Berner, R. A. 1994. GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 294, 5691.CrossRefGoogle Scholar
Berner, R. A. 2001. Modelling atmospheric O2 over Phanerozoic time. Geochimica et Cosmochimica Acta 65, 685–94.CrossRefGoogle Scholar
Berner, R. A. 2006. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. American Journal of Science 306, 295302.CrossRefGoogle Scholar
Besse, J. & Courtillot, V. 1988. Paleogeographic maps of the continents bordering the Indian Ocean since the Early Jurassic. Journal of Geophysical Research 93, 11791–808.CrossRefGoogle Scholar
Bice, K. L., Birgel, D., Meyers, P. A., Dahl, K. A., Hinrichs, K.-U. & Norris, R. D. 2006. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography 21, PA2002, doi: 10.1029/2005PA001203.CrossRefGoogle Scholar
Bice, K. L. & Norris, R. D. 2002. Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian–Turonian). Paleoceanography 17, 1070, doi: 10.1029/2002PA000778.CrossRefGoogle Scholar
Black, L. P. & Gulson, B. L. 1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. Bureau of Mineral Resources Journal of Australian Geology and Geophysics 3, 227–32.Google Scholar
Blättler, C. L., Jenkyns, H. C., Reynard, L. M. & Henderson, G. M. 2011. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth and Planetary Science Letters 309, 7788.CrossRefGoogle Scholar
Bodin, S., Godet, A., Föllmi, K. B., Vermeulen, J., Arnaud, H., Strasser, A., Fiet, N. & Adatte, T. 2006. The late Hauterivian Faraoni oceanic anoxic event in the western Tethys: evidence from phosphorus burial rates. Palaeogeography, Palaeoclimatology, Palaeoecology 235, 245–64.CrossRefGoogle Scholar
Bottini, C., Cohen, A. S., Erba, E., Jenkyns, H. C. & Coe, A. L. 2012. Osmium-isotope evidence for volcanism, weathering, and ocean mixing during the early Aptian OAE 1a. Geology 40, 583–6.CrossRefGoogle Scholar
Bralower, T. J., Cobabe, E., Clement, B., Sliter, W. V., Osburn, C. L. & Longoria, J. 1999. The record of global change in mid-Cretaceous (Barremian–Albian) sections from the Sierra Madre, northeastern Mexico. Journal of Foraminiferal Research 29, 418–37.Google Scholar
Breecker, D. O., Sharp, Z. D. & McFadden, L. D. 2010. Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100. Proceedings of the National Academy of Sciences 107, 576–80.CrossRefGoogle Scholar
Buchmann, N., Brooks, R. J., Flanagan, L. B. & Ehleringer, J. R. 1998. Carbon isotope discrimination of terrestrial ecosystems. In Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes (ed. Griffiths, H.), pp. 203–21. Oxford, Unitied Kingdom: BIOS Scientific Publications.Google Scholar
Cao, M. 1986 Lower Cretaceous ostracods from the Hekow Formation, Fujian. Acta Palaeontologica Sinica 25, 239–47 (in Chinese with English abstract).Google Scholar
Cerling, T. E. 1991. Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. American Journal of Science 291, 377400.CrossRefGoogle Scholar
Cerling, T. E. 1999. Stable carbon isotopes in palaeosol carbonates. In Palaeoweathering, Palaeosurfaces and Related Continental Deposits (eds Thiry, M. & Simon-Coinçon, R.), pp. 4360. Special Publication of the International Association of Sedimentologists 27.Google Scholar
Cerling, T. E. & Quade, J. 1993. Stable carbon and oxygen isotopes in soil carbonates. In Climate Change in Continental Isotopic Records (eds Swart, P. K., Lohmann, K. C., McKenzie, J. A. & Savin, S.), pp. 217–31. Washington DC: American Geophysical Union.Google Scholar
Channell, J. E. T., Erba, E. & Lini, A. 1993. Magnetostratigraphic calibration of the late Valanginian carbon isotope event in pelagic limestones from northern Italy and Switzerland. Earth and Planetary Science Letters 118, 145–66.CrossRefGoogle Scholar
Chen, C., Lee, C., Lu, H. & Hseh, P. 2008. Generation of Late Cretaceous silicic rocks in SE China: age, major element and numerical simulation constraints. Journal of Asian Earth Sciences 31, 479–98.CrossRefGoogle Scholar
Chen, J.-H., Komatsu, T., Cao, M.-Z. & Stiller, F. 2006. Kumamotoa, an early Late Cretaceous non-marine bivalve, from Fujian, south China. Journal of Asian Earth Sciences 27, 943–51.Google Scholar
Chen, L.-Q., Li, C.-S., Chaloner, W. G., Beerling, D. J., Sun, Q.-G., Collinson, M. E. & Mitchell, P. L. 2001. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. American Journal of Botany 88, 1309–15.CrossRefGoogle ScholarPubMed
Chen, W., Chen, P., Xu, X. & Zhang, M. 2005. Geochemical characteristics of Cretaceous basaltic rocks in South China and constraints on Pacific Plate subduction. Science in China (Series D, Earth Sciences) 48, 2104–17.CrossRefGoogle Scholar
Coffin, M. F. & Eldholm, O. 1993. Scratching the surface: estimating dimensions of Large Igneous Provinces. Geology 21, 515–8.2.3.CO;2>CrossRefGoogle Scholar
Courtillot, V. E. & Renne, P. R. 2003. On the ages of flood basalt events. Comptes Rendus Geoscience 335, 113–40.CrossRefGoogle Scholar
Dumitrescu, M., Brassell, S. C., Schouten, S., Hopmans, E. C. & Sinninghe Damsté, J. S. 2006. Instability in tropical Pacific sea-surface temperatures during the early Aptian. Geology 34, 833–6.CrossRefGoogle Scholar
Ekart, D. D., Cerling, T. E., Montañez, I. P. & Tabor, N. J. 1999. A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. American Journal of Science 299, 805–27.CrossRefGoogle Scholar
Erba, E., Bartolini, A. & Larson, R. L. 2004. Valanginian Weissert oceanic anoxic event. Geology 32, 149–52.CrossRefGoogle Scholar
Erba, E., Channell, J. E. T., Claps, M., Jones, C., Larson, R., Opdyke, B., Premoli Silva, I., Riva, A., Salvini, G. & Torricelli, S. 1999. Integrated stratigraphy of the Cismon Apticore (Southern Alps, Italy): A ‘reference section’ for the Barremian–Aptian interval at low latitudes. Journal of Foraminiferal Research 29, 371–92.Google Scholar
Erbacher, J., Thurow, J. & Littke, R. 1996. Evolution patterns of radiolaria and organic matter variations: a new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology 24, 499502.2.3.CO;2>CrossRefGoogle Scholar
Fletcher, B. J., Beerling, D. J., Brentnall, S. J. & Royer, D. L. 2005. Fossil bryophytes as recorders of ancient CO2 levels: experimental evidence and a Cretaceous case study. Global Biogeochemical Cycles 19, 113.CrossRefGoogle Scholar
Fletcher, B. J., Brentnall, S. J., Anderson, C. W., Berner, R. A. & Beerling, D. J. 2008. Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Nature Geoscience 1, 43–7.CrossRefGoogle Scholar
Föllmi, K. B., Godet, A., Bodin, S. & Linder, P. 2006. Interactions between environmental change and shallow water carbonate buildup along the northern Tethyan margin and their impact on the Early Cretaceous carbon isotope record. Paleoceanography 21, PA4211, doi:10.1029/2006PA001313.CrossRefGoogle Scholar
François, L., Grard, A. & Goddéris, Y. 2005. Modelling atmospheric CO2 changes at geological time scales. In Pre-Cambrian to Palaeozoic Palaeopalynology and Palaeobotany (eds Steemans, P. & Javaux, E.). Carnets de Géologie (Notebooks on Geology), Brest, Memoir 2, Abstract 02 (CG2005-M02/02).Google Scholar
Freeman, K. H. & Hayes, J. M. 1992. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochemical Cycles 6, 185–98.CrossRefGoogle ScholarPubMed
Gale, A. S., Bown, P., Caron, M., Crampton, J., Crowhurst, S. J., Kennedy, W. J., Petrizzo, M. R. & Wray, D. S. 2011. The uppermost Middle and Upper Albian succession at the Col de Palluel, Hautes-Alpes, France: an integrated study (ammonites, inoceramid bivalves, planktonic foraminifera, nannofossils, geochemistry, stable oxygen and carbon isotopes, cyclostratigraphy). Cretaceous Research 32, 59130.CrossRefGoogle Scholar
Ganino, C. & Arndt, N. T. 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37, 323–6.CrossRefGoogle Scholar
Ghosh, P., Bhattacharya, S. K. & Jani, R. A. 1995. Paleoclimate and paleovegetation in central India during the Upper Cretaceous based on stable isotope composition of the paleosol carbonate. Palaeogeography, Palaeoclimatology, Palaeoecology 114, 285–96.CrossRefGoogle Scholar
Gröcke, D. R., Hesselbo, S. P. & Jenkyns, H. C. 1999. Carbon-isotope composition of Lower Cretaceous fossil wood: ocean-atmosphere chemistry and relation to sea-level change. Geology 27, 155–8.2.3.CO;2>CrossRefGoogle Scholar
Gröcke, D. R., Ludvigson, G. A., Witzke, B. L., Robinson, S. A., Joeckel, R. M., Ufnar, D. F. & Ravn Robert, L. A. 2006. Recognizing the Albian–Cenomanian (OAE1d) sequence boundary using plant carbon isotopes: Dakota Formation, Western Interior Basin, USA. Geology 34, 193–6.CrossRefGoogle Scholar
Hansen, K. W. & Wallmann, K. 2003. Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2: a model perspective. American Journal of Science 303, 94148.CrossRefGoogle Scholar
Haworth, H., Hesselbo, S. P., McElwain, J. C., Robinson, S. A. & Brunt, J. W. 2005. Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae). Geology 33, 749–52.CrossRefGoogle Scholar
Heimhofer, U., Hochuli, P. A., Herrle, J. O., Andersen, N. & Weissert, H. 2004. Absence of major vegetation and palaeoatmospheric pCO2 changes associated with oceanic anoxic event 1a (Early Aptian, SE France). Earth and Planetary Science Letters 223, 303–18.CrossRefGoogle Scholar
Hennig, S., Weissert, H. & Bulot, L. 1999. C-isotope stratigraphy, a calibration tool between ammonite- and magnetostratigraphy: the Valanginian-Hauterivian transition. Geologica Carpatica 50, 91–6.Google Scholar
Herrle, J. O. 2002. Paleoceanographic and paleoclimatic implications on mid-Cretaceous black shale formation in the Vocontian Basin and the Atlantic: evidence from calcareous nannofossils and stable isotopes. Tübinger Mikropaldontologische Mitteilungen 27, 1114.Google Scholar
Herrle, J. O., Kößler, P., Friedrich, O., Erlenkeuser, H. & Hemleben, C. 2004. High-resolution carbon isotope records of the Aptian to Lower Albian from SE France and the Mazagan Plateau (DSDP Site 545): a stratigraphic tool for paleoceanographic and paleobiologic reconstruction. Earth and Planetary Science Letters 218, 149–61.CrossRefGoogle Scholar
Hochuli, P. A., Menegatti, A. P., Weissert, H., Riva, A., Erba, E. & Premoli Silva, I. 1999. Episodes of high productivity in the early Aptian Alpine Tethys. Geology 27, 657–60.2.3.CO;2>CrossRefGoogle Scholar
Hong, S. K. & Lee, Y. Il. 2012. Evaluation of atmospheric carbon dioxide concentrations during the Cretaceous. Earth and Planetary Science Letters 327–8, 23–8.CrossRefGoogle Scholar
Hu, H., Hu, S., Wang, S. & Zhu, M. 1982. Jurassic and Cretaceous age of volcanic rocks on isotope dating. Acta Geologica Sinica 56, 315–22 (in Chinese with English abstract).Google Scholar
Hu, L., Li, P. & Ma, X. 1990. A magnetostratigraphic study of Cretaceous red beds from Shang-Hang, western Fujian. Geology of Fujian 9, 3342 (in Chinese).Google Scholar
Huang, C. M., Retallack, G. J. & Wang, C. S. 2012. Early Cretaceous atmospheric pCO2 levels recorded from pedogenic carbonates in China. Cretaceous Research 33, 42–9.CrossRefGoogle Scholar
Huber, B. T. & Leckie, R. M. 2011. Planktic foraminiferal species turnover across deep-sea Aptian/Albian boundary sections. Journal of Foraminiferal Research 41, 5395.CrossRefGoogle Scholar
Huber, B. T., MacLeod, K. G., Gröcke, D. R. & Kucera, M. 2011. Paleotemperature and paleosalinity inferences and chemostratigraphy across the Aptian/Albian boundary in the subtropical North Atlantic. Paleoceanography 26, PA4211, doi: 10.1029/2001PA002178.CrossRefGoogle Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation–inductively coupled plasma–mass spectrometry to in situ U/Pb zircon geochronology. Chemical Geology 211, 4769.CrossRefGoogle Scholar
Jahren, A. H., Arens, N. C. & Harbeson, S. A. 2008. Prediction of atmospheric δ13CO2 using fossil plant tissues. Reviews of Geophysics 46, RG1002, doi: 10.1029/2006RG000219.CrossRefGoogle Scholar
Jahren, A. H., Arens, N. C., Sarmiento, G., Guerrero, J. & Amundson, R. 2001. Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology 29, 159–62.2.0.CO;2>CrossRefGoogle Scholar
Janasi, V. A., Freitas, V. A. & Heaman, L. H. 2011. The onset of flood basalt volcanism, Northern Paraná Basin, Brazil: a precise U–Pb baddeleyite/zircon age for a Chapecó-type dacite. Earth and Planetary Science Letters 302, 147–53.CrossRefGoogle Scholar
Jenkyns, H. C. 2003. Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philosophical Transactions of the Royal Society of London, Series A 361, 1885–916.CrossRefGoogle ScholarPubMed
Jenkyns, H. C. 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11, Q03004, doi: 10.1029/2009GC002788.CrossRefGoogle Scholar
Jenkyns, H. C., Schouten-Huibers, L., Schouten, S. & Sinninghe-Damsté, J. S. 2012. Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Climates of the Past 8, 215–26.CrossRefGoogle Scholar
Jenkyns, H. C. & Wilson, P. A. 1999. Stratigraphy, paleoceanography, and evolution of Cretaceous Pacific guyots: relics from a greenhouse Earth. American Journal of Science 299, 341–92.CrossRefGoogle Scholar
Kemper, E. 1987. Das Klima der Kreide-Zeit. Geologisches Jahrbuch Reihe A 96, 5185.Google Scholar
Kuhnt, W., Holbourn, A. & Moullade, M. 2011. Transient global cooling at the onset of early Aptian oceanic anoxic event (OAE)1a. Geology 39, 323–6.CrossRefGoogle Scholar
Kuroda, J., Tanimizu, M., Hori, R. S., Suzuki, K., Ogawa, N. O., Tejada, M. L. G., Coffin, M. F., Coccioni, R., Erba, E. & Ohkouchi, N. 2011. Lead isotopic record of Barremian-Aptian marine sediments: Implications for large igneous provinces and the Aptian climatic crisis. Earth and Planetary Science Letters 307, 126–34.CrossRefGoogle Scholar
Larson, R. L. & Erba, E. 1999. Onset of the Mid-Cretaceous greenhouse in the Barremian– Aptian: Igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography 14, 663–78.CrossRefGoogle Scholar
Leckie, R. M., Bralower, T. J. & Cashman, R. 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17, 1041, doi: 10.1029/2001PA000623.CrossRefGoogle Scholar
Lee, Y. I. 1999. Stable isotopic composition of calcic paleosols of the Early Cretaceous Hasandong Formation, southeastern Korea. Palaeogeography, Palaeoclimatology, Palaeoecology 150, 123–33.CrossRefGoogle Scholar
Lee, Y. I. & Hisada, K. 1999. Stable isotopic composition of pedogenic carbonates of the Early Cretaceous Shimonoseki Subgroup, western Honshu, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 153, 127–38.CrossRefGoogle Scholar
Leier, A. L., Quade, J., DeCelles, P. & Kapp, P. 2009. Stable isotopic results from paleosol carbonate in South Asia. Paleoenvironmental reconstructions and selective alteration. Earth and Planetary Science Letters 279, 242–54.CrossRefGoogle Scholar
Li, K.-Y., Shen, J. & Wang, X. 1987. The source and evolution of parent magma of Mesozoic volcanics in Zhejiang, Fujian and Jiangxi. Bulletin of the Nanjing Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences 8, 1525 (in Chinese with English abstract).Google Scholar
Li, K.-Y., Shen, J. & Wang, X. 1989. Isotopic geochronology of Mesozoic terrestrial volcanic rocks in Zhejiang, Fujian and Jiangxi China. Journal of Stratigraphy 13, 113 (in Chinese with English abstract).Google Scholar
Li, X., Chen, S., Cao, K., Chen, Y., Xu, B. & Ji, Y. 2009. Paleosols of the mid-Cretaceous: a report from Zhejiang and Fujian, SE China. Earth Science Frontiers 16, 6370.CrossRefGoogle Scholar
Li, X., Chen, S., Luo, J., Wan, Y., Cao, K. & Liu, L. 2011. Single zircon U–Pb isotope chronology of the Early Cretaceous Jiande Group from western Zhejiang, SE China: Significances to stratigraphy. Geological Review 57, 825–36 (in Chinese with English abstract).Google Scholar
Li, X., Xu, W., Liu, W., Zhou, Y., Wang, Y., Sun, Y., Liu, L. 2013. Climatic and environmental indications of carbon and oxygen isotopes from the Lower Cretaceous calcrete and lacustrine carbonates in Southeast and Northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology 385, 171–89.CrossRefGoogle Scholar
Liu, C., Zhu, R.-X., Jin, Z.-X., Lu, L.-Z. & Du, Y.-H. 1992. The study on magnetostratigraphy of Cretaceous in Laozhu District of Lishui, Zhejiang, China. In Advances in Geoscience (ed. Wang, S.), pp. 104–10. China Ocean Press, Beijing, China (in Chinese with English abstract).Google Scholar
Liu, F.-Y., Wu, J.-H. & Liu, S. 2009. Early Cretaceous zircon SHRIMP U-Pb age of the trachyte and its significances of the Gan-Hang Belt. Journal of East China Institute of Technology 32, 330–5 (in Chinese with English abstract).Google Scholar
Liu, X. 1982. Recognition of the Yanshanian movement in the eastern part of China. Geological Review 5, 14 (in Chinese with English abstract).Google Scholar
Lorenzen, J., Kuhnt, W., Holbourn, A., Flögel, S., Moullade, M. & Tronchetti, G. 2013. A new sediment core from the Bedoulian (Lower Aptian) stratotype at Roquefort-La Bédoule, SE France. Cretaceous Research 39, 616.CrossRefGoogle Scholar
Lu, Q., Zhu, G. & Qin, Z. 2000. The characteristics and genesis of Mesozoic and Cenozoic basalts in Fujian, China. Regional Geology of China 19, 8591 (in Chinese with English abstract).Google Scholar
Luciani, V., Cobianchi, M. & Jenkyns, H. C. 2001. Biotic and geochemical response to anoxic events: the Aptian pelagic succession of the Gragano Promontory (southern Italy). Geological Magazine 138, 277–98.CrossRefGoogle Scholar
Luciani, V., Cobianchi, M. & Jenkyns, H. C. 2004. Albian high-resolution biostratigraphy and isotope stratigraphy: The Coppa della Nuvola pelagic succession of the Gargano Promontory (Southern Italy). Eclogae Geologicae Helvetiae 97, 7792.CrossRefGoogle Scholar
Ludvigson, G. A., Joeckel, R. M., González, L. A., Gulbranson, E. L., Rasbury, E. T., Hunt, G. J., Kirkland, J. I. & Madsen, S. 2010. Correlation of Aptian–Albian carbon isotope excursions in continental strata of the Cretaceous foreland basin, eastern Utah, U.S.A. Journal of Sedimentary Research 80, 955–74.CrossRefGoogle Scholar
Malkoč, M. & Mutterlose, J. 2010. The early Barremian warm pulse and the late Barremian cooling: a high-resolution geochemical record of the boreal realm. Palaios 25, 1423.CrossRefGoogle Scholar
Méhay, S., Keller, C. E., Bernasconi, S. M., Weissert, H., Erba, E., Bottini, C. & Hochuli, P. A. 2009. A volcanic CO2 pulse triggered the Cretaceous Oceanic Anoxic Event 1a and a biocalcification crisis. Geology 37, 819–22.CrossRefGoogle Scholar
Menegatti, A. P., Weissert, H., Brown, R. S., Tyson, R. V., Farrimond, P., Strasser, A. & Caron, M. 1998. High-resolution δ13C stratigraphy through the early Aptian ‘Livello Selli’ of the Alpine Tethys. Paleoceanography 13, 530–45.CrossRefGoogle Scholar
Morinaga, H., Inokuchi, H. & Miyata, T. 1999. Late Cretaceous paleomagnetism in Fujian and Guangdong, China. Earth Science Journal of China University of Geoscience 24, 142–4 (in Chinese with English abstract).Google Scholar
Moullade, M., Kuhnt, W., Bergen, J. A., Masse, J.-P. & Tronchetti, G. 1998. Correlation of biostratigraphic and stable isotope events in the Aptian historical stratotype of La Bedoule (southeast France). Comptes Rendus de l'Academie des Sciences, Series IIa, Earth and Planetary Science 327, 693–8.Google Scholar
Mutterlose, J., Bornemann, A. & Herrle, J. 2009. The Aptian–Albian cold snap: evidence for ‘mid’ Cretaceous icehouse interludes. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 252, 217–25.CrossRefGoogle Scholar
Nordt, L., Atchley, S. & Dworkin, S. 2002. Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous–Tertiary boundary. Geology 30, 703–6.2.0.CO;2>CrossRefGoogle Scholar
Nordt, L., Atchley, S. & Dworkin, S. 2003. Terrestrial evidence for two greenhouse events in the latest Cretaceous. GSA Today 13, 49.2.0.CO;2>CrossRefGoogle Scholar
Ogg, J. G., Hinnov, L. A. & Huang, C. 2012. Chapter 27–Cretaceous. In The Geologic Time Scale (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. and Ogg, G.), pp. 793853. Amsterdam: Elsevier Science Ltd.CrossRefGoogle Scholar
Okada, H. 1999. Plume-related sedimentary basins in East Asia during the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology 150, 111.CrossRefGoogle Scholar
Petrizzo, M. R., Huber, B. T., Gale, A. S., Barchetta, A. & Jenkyns, H. C. 2012. Abrupt planktic foraminiferal turnover across the Niveau Kilian at Col de Pré-Guittard (Vocontian Basin, southeast France): new criteria for defining the Aptian/Albian boundary. Newsletters on Stratigraphy 45, 5574.CrossRefGoogle Scholar
PGSZ (Petroleum Geological Survey of Zhejiang Province). 1979. Report of Petroleum Geological Investigation to the Jinhua-Quxian basin, Zhejiang province (in Chinese). Zhejiang Bureau of Geology, pp. 128 (in Chinese).Google Scholar
Pirrie, D., Marshall, J. D., Doyle, P. & Riccardi, A. C. 2004. Cool early Albian climates; new data from Argentina. Cretaceous Research 25, 2733.CrossRefGoogle Scholar
Podlaha, O. G., Mutterlose, J. & Veizer, J. 1998. Preservation of δ18O and δ13C in belemnite rostra from the Jurassic/Early Cretaceous successions. American Journal of Science 298, 324–47.CrossRefGoogle Scholar
Price, G. D. 2003. New constraints upon isotope variation during the early Cretaceous (Barremian–Cenomanian) from the Pacific Ocean. Geological Magazine 140, 513–22.CrossRefGoogle Scholar
Quan, C., Sun, C., Sun, Y. & Sun, G. 2009. High resolution estimates of paleo-CO2 levels through the Campanian (Late Cretaceous) based on Ginkgo cuticles. Cretaceous Research 30, 424–8.CrossRefGoogle Scholar
Reboulet, S., Rawson, P. F., Moreno-Bedmar, J. A., Aguirre-Urreta, M. B., Barragan, R., Bogomolov, Y., Company, M., Gonzalez-Arreola, C., Stoyanova, V. I., Lukeneder, A., Matrion, B., Mitta, V., Randrianaly, H., Vasicek, Z., Baraboshkin, E. J., Bert, D., Bersac, S., Bogdanova, T. N., Bulot, L. G., Latil, J.-L., Mikhailova, I. A., Ropolo, P. & Szives, O. 2011. Report on the 4th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the ‘Kilian Group’, Dijon, France, 30th August, 2010. Cretaceous Research 32, 786–93.CrossRefGoogle Scholar
Ren, J. S. 1990. Tectonic Evolution to Ore-forming of Continental Lithosphere in Eastern China and Adjacent Areas. Bejing, Science Press, 205 pp (in Chinese with English abstract).Google Scholar
Ren, J. S. & Chen, T. 1989. Tectonic evolution of the continental lithosphere in eastern China and adjacent areas. Journal of Southeast Asian Earth Science 3, 1727.Google Scholar
Retallack, G. J. 2001. A 300 million year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411, 287–90.CrossRefGoogle ScholarPubMed
Retallack, G. J. 2005. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology 33, 333–6.CrossRefGoogle Scholar
Retallack, G. J. 2009. Greenhouse crises of the past 300 million years. Geological Society of American Bulletin 121, 1441–55.CrossRefGoogle Scholar
Robinson, S. A., Andrews, J. E., Hesselbo, S. P., Radley, J. D., Dennis, P. F., Harding, I. C. & Allen, P. 2002. Atmospheric pCO2 and depositional environment from stable-isotope geochemistry of calcrete nodules (Barremian, Lower Cretaceous, Wealden Beds, England). Journal of the Geological Society, London 159, 215–24.CrossRefGoogle Scholar
Robinson, S. A. & Hesselbo, S. P. 2004. Fossil-wood carbon-isotope stratigraphy of the non-marine Wealden Group (Lower Cretaceous, southern England). Journal of the Geological Society, London 161, 133–45.CrossRefGoogle Scholar
Romanek, C., Grossman, E. & Morse, J. 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56, 419–30.CrossRefGoogle Scholar
Royer, D. L. 2006. CO2-forced climate thresholds during the Phanerozoic. Geochimica et Cosmochimica Acta 70, 5665–75, doi: 10.1016/j.gca.2005.11.031.CrossRefGoogle Scholar
Schaller, M. F., Wright, J. D. & Kent, D. V. 2011. Atmospheric pCO2 perturbations associated with the central Atlantic magmatic province. Science 338, 1404–9.CrossRefGoogle Scholar
Schlanger, S. O. & Jenkyns, H. C. 1976. Cretaceous oceanic anoxic events: cause and consequence. Geologie en Mijnbouw 55 (34), 179–84.Google Scholar
Shou, Z. 1995. Cretaceous volcanic sequences and their Ostracoda fauna in Zhejiang, Fujian and Jiangxi provinces of China. Beijing: Geological Publishing House, 56 pp. (in Chinese with English abstract).Google Scholar
Shu, L. S., Faure, M., Wang, B., Zhou, X. M. & Song, B. 2008. Late Paleozoic–early Mesozoic geological features of South China: response to the Indosinian collision event in southeast Asia. Comptes Rendus Geoscience 340, 151–65.CrossRefGoogle Scholar
Shu, L. S., Zhou, X. M., Deng, P., Wang, B., Jiang, S. Y., Yu, J. H. & Zhao, X. X. 2009. Mesozoic tectonic evolution of the Southeast China Block: new insights from basin analysis. Journal of Asian Earth Sciences 34, 376–91.CrossRefGoogle Scholar
Sinninghe Damsté, J. S., Kuypers, M. M. M., Pancost, R. D. & Schouten, S. 2008. The carbon isotopic response of algae, (cyano)bacteria, archaea and higher plants to the late Cenomanian perturbation of the global carbon cycle: insights from biomarkers in black shales from the Cape Verde Basin (DSDP Site 367). Organic Geochemistry 39, 1703–18.CrossRefGoogle Scholar
Sun, B., Xiao, L., Xie, S. P., Deng, S., Wang, Y., Jia, H. & Turner, S. 2007. Quantitative analysis of paleoatmospheric CO2 level based on stomatal characters of fossil Ginkgo from Jurassic to Cretaceous in China. Acta Geologica Sinica (English Edition) 81, 931–39.Google Scholar
Tajika, E. 1999. Carbon cycle and climate change during the Cretaceous inferred from a biogeochemical carbon cycle model. The Island Arc 8, 293303.CrossRefGoogle Scholar
TRGZ (Third Regional Geological Survey of Zhejiang province). 1992. Lithostratigraphy of Zhejiang province. Wuhan: Press of Chinese Geosciences, pp. 164–5 (in Chinese).Google Scholar
Vahrenkamp, V. C. 2010. Chemostratigraphy of the Lower Cretaceous Shu'aida Formation: A δ13C reference profile for the Aptian Stage from the southern neo-Tethys Ocean. In Barremian–Aptian Stratigraphy and Hydrocarbon Habitat of the Eastern Arabian Plate (eds van Buchem, F. S. P., Al-Husseini, M. I., Maurer, F. & Droste, H. J.), pp. 107–37. GeoArabia, Special Publication 4/1.Google Scholar
van Achterbergh, E., Ryan, C. G., Jackson, S. E. & Griffin, W. L. 2001. Data reduction software for LA-ICPMS. In Laser Ablation-ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications (ed. Sylvester, P. J.), pp. 239–43. Ottawa, Ontario, Mineralogical Association of Canada, Short Course Series 29.Google Scholar
van de Schootbrugge, B., Föllmi, K. B., Bulot, L. G. & Burns, S. J. 2000. Paleoceanographic changes during the early Cretaceous (Valanginian–Hauterivian): evidence from oxygen and carbon stable isotopes. Earth and Planetary Science Letters 181, 1531.CrossRefGoogle Scholar
Wagner, T., Herrle, J. O., Sinninghe Damsté, J. S., Schouten, S., Stüsser, I. & Hofmann, P. 2008. Rapid warming and salinity changes of Cretaceous surface waters in the subtropical North Atlantic. Geology 36, 203–6.CrossRefGoogle Scholar
Wallmann, K. 2001. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochimica et Cosmochimica Acta 18, 3005–25.CrossRefGoogle Scholar
Wang, D.-Z., Zhou, J.-C., Qiu, J.-S. & Fan, H.-H. 2000. Characteristics and petrogenesis of late Mesozoic granitic volcanic-intrusive complexes in southeastern China. Acta Metallurgica Sinica 6, 487–98 (in Chinese with English abstract).Google Scholar
Wang, Y., Guan, T.-Y, Huang, G.-F., Yu, D.-G. & Chen, C.-L. 2002. Isotope chronological studies of Late Yanshanian Volcanic Rocks in Northeast Jiangxi Province. Acta Geoscientia Sinica 23, 233–6 (in Chinese with English abstract).Google Scholar
Weissert, H. 1989. C-isotope stratigraphy, a monitor of paleoenvironmental change: a case study from the Early Cretaceous. Surveys in Geophysics 10, 161.CrossRefGoogle Scholar
Weissert, H. & Channell, J. E. T. 1989. Tethyan carbonate carbon isotope stratigraphy across the Jurassic–Cretaceous boundary: an indicator of decelerated carbon cycling. Paleoceanography 4, 483–94.CrossRefGoogle Scholar
Weissert, H. & Erba, E. 2004. Volcanism, CO2, and palaeoclimate: a Late Jurassic–Early Cretaceous carbon and oxygen isotope record. Journal of the Geological Society, London 161, 695702.CrossRefGoogle Scholar
Weissert, H. & Lini, A. 1991. Ice Age interludes during the time of Cretaceous greenhouse climate? In Controversies in Modern Geology (eds Müller, D. W., McKenzie, J. A. & Weissert, H.), pp. 173–91. New York: Academic Press Limited.Google Scholar
Wignall, P. B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews 53, 133.CrossRefGoogle Scholar
Wilson, P. A. & Norris, R. D. 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412, 425–9.CrossRefGoogle ScholarPubMed
Wu, J. 1995. Late Early Cretaceous charophytes from the Xinjiang basin, Jiangxi and their stratigraphic significance. Acta Micropalaeontologica Sinica 12 (1), 7987 (in Chinese with English abstract).Google Scholar
Wu, J. 2000. A study on the ‘Luotang Formation’ in the Haogangshan Section of Guixi, Jiangxi. Journal of Stratigraphy 24, 72–7 (in Chinese with English abstract).Google Scholar
Xing, G.-F., Lu, Q.-D., Chen, R., Zhang, Z.-Y., Nie, T.-C., Li, L.-M, Huan, G.-J. & Lin, M. 2008. Study on the ending time of Late Mesozoic tectonic regime transition in South China: comparing to the Yanshan area in North China. Acta Geologica Sinica 82, 451–63 (in Chinese with English abstract).Google Scholar
Yu, X.-Q., Shu, L.-S., Deng, P., Wang, B. & Zhu, F.-P. 2003. The sedimentary features of the Jurassic–Tertiary terrestrial strata in southeast China. Journal of Stratigraphy 27, 254–63 (in Chinese with English abstract).Google Scholar
Yu, Y.-W. & Xu, B-T. 1999. Stratigraphical sequence and geochronology of the Upper Mesozoic volcano-sedimentary rock series in Zhejiang. Journal of Stratigraphy 23, 136–45 (in Chinese with English abstract).Google Scholar
Zakharov, Y. D., Baraboshkin, E. Y., Weissert, H., Michailova, I. A., Smyshlyaeva, O. P. & Safronov, P. P. 2013. Late Barremian–early Aptian climate of the northern middle latitudes: Stable isotope evidence from bivalve and cephalopod molluscs of the Russian Platform. Cretaceous Research 44, 183201.CrossRefGoogle Scholar
Zhang, H. 1998. Yanshan Event. Acta Geologica Sinica 72, 103–11 (in Chinese with English abstract).Google Scholar
Zhang, L. 1987. Discovery of fossils in Guifeng region, Yiyang of Jiangxi province and its significances. Geology of Jiangxi Province 1, 137–9 (in Chinese with English abstract).Google Scholar
Zheng, F. 1993. Early Cretaceous palynological flora in Xiaoxi basin of Gutian county, Fujian province. Geology of Fujian 12, 210–17 (in Chinese).Google Scholar
Zhu, D.-C., Chung, S.-L., Mo, X.-X., Zhao, Z.-D., Niu, Y., Song, B. & Yang, Y.-H. 2009. The 132 Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology 37, 583–6.CrossRefGoogle Scholar
Supplementary material: File

Li et al. Supplementary Material

Table

Download Li et al. Supplementary Material(File)
File 130.6 KB
Supplementary material: File

Li et al. Supplementary Material

Table

Download Li et al. Supplementary Material(File)
File 244.2 KB
Supplementary material: File

Li et al. Supplementary Material

Table

Download Li et al. Supplementary Material(File)
File 328.2 KB
Supplementary material: File

Li et al. Supplementary Material

Table

Download Li et al. Supplementary Material(File)
File 91.6 KB