Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:43:41.982Z Has data issue: false hasContentIssue false

Benthonic foraminifera in the Upper Miocene Cruse Formation at Quinam Bay, Trinidad, western tropical Atlantic Ocean, and their palaeoenvironmental significance

Published online by Cambridge University Press:  03 July 2013

B. WILSON*
Affiliation:
Petroleum Geoscience Programme, Department of Chemical Engineering, University of the West Indies, St Augustine, Trinidad and Tobago
H. VINCENT
Affiliation:
21 Riverdale Drive, Claxton Bay, Trinidad and Tobago
*
Author for correspondence: [email protected]

Abstract

The Upper Miocene Cruse Formation of Trinidad yields predominantly agglutinated foraminifera. The limited assemblage has previously hampered palaeoenvironmental interpretations. Twenty-two samples taken from a basal Cruse section at 0.5 m intervals from Quinam Bay (10°05′07.7″N, 61°45′04.7″W) yielded 2938 foraminifera in 33 species, almost all agglutinated. The absence of calcite-cemented agglutinants suggests post-mortem dissolution of calcareous specimens. Dominant Spirosigmoilinella compressa indicates lower bathyal to abyssal palaeodepths, although the low values of the information function H are typical of shallower water. Subdominant Haplophragmoides carinatus and Haplophragmoides sp. 1 indicate low dissolved oxygen levels. Diversities measured using species richness S and H were especially low in the lowest 3.5 m of the section. The proportional abundance of the dominant species in each sample, max(pi), indicated three subsections, being low in the middle of the section but higher at the top and bottom. SHE analysis indicated six abundance biozones (ABs) containing one to seven samples each. Of the three ABs with more than three samples, two had Type 1 community structures and one had a Type 0 community structure. ABs with one or two samples indicate that environmental change at the top of the interval with low diversity is rapid. This is reflected in a change from abundant morphotype M3a (surficial epifauna flattened) at the base of the section to abundant M4a (shallow infauna planispiral) with M4b (deep infaunal) towards the top, which shows a downward shift in the position of the redox front part way through the section.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J. & Ogden, J. M. 1984. Pyramid methods in image processing. RCA Engineer 29, 3341.Google Scholar
Agard, J. B. R. & Gobin, J. F. 2000. The Lesser Antilles, Trinidad and Tobago. In Seas at the Millennium: An Environmental Evaluation (ed. Sheppard, C.). pp. 627–41. Oxford: Elsevier Science Limited.Google Scholar
Akker, T. J. H. A. V. D., Kaminski, M. A., Gradstein, F. M. & Wood, J. 2000. Campanian to Palaeocene biostratigraphy and palaeoenvironments in the Foula Sub-basin, west of the Shetland Islands. Journal of Micropalaeontology 19, 2343.Google Scholar
Batjes, D. A. J. 1968. Palaeoecology of foraminiferal assemblages in the late Miocene Cruse and Forest Formations of Trinidad, Antilles. In Fourth Caribbean Geological Conference, 1965 (ed. Saunders, J. B.), pp. 141–56. Arima, Trinidad: Caribbean Printers.Google Scholar
Berger, W. H. & Parker, F. L. 1970. Diversity of planktonic foraminifera in deep-sea sediments. Science 168, 1345–47.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. I. & Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy. In Geochronology, Time Scales and Global Stratigraphic Correlation: A Unified Temporal Framework for an Historical Geology (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.), pp. 129212. London: Geological Society, Special Publication no. 54.Google Scholar
Bolli, H. M. 1957. Planktonic Foraminifera from the Oligocene–Miocene Cipero and Lengua Formations of Trinidad, BWI. Bulletin United States National Museum 215, 97123.Google Scholar
Bolli, H. M., Beckmann, J.-P. & Saunders, J. B. 1995. Benthic Foraminiferal Biostratigraphy of the South Caribbean Region. Cambridge: Cambridge University Press.Google Scholar
Brönnimann, P. 1951. Guppyella, Alveovalvulina and Discamminoides, new genera of arenaceous foraminifera from the Miocene of Trinidad, BWI. Contributions from the Cushman Foundation for Foraminiferal Research 2, 97105.Google Scholar
Brönnimann, P. 1953. Arenaceous foraminifera from the Oligo–Miocene of Trinidad. Contributions from the Cushman Foundation for Foraminiferal Research 4, 87100.Google Scholar
Buzas, M. A. & Hayek, L.-A. C. 1998. SHE analysis for biofacies identification. Journal of Foraminiferal Research 28, 233–39.Google Scholar
Buzas, M. A. & Hayek, L.-A. C. 2011. Community structure: global evaluation and the role of within community beta-diversity. Journal of Foraminiferal Research 41, 138–54.Google Scholar
Cetean, C. G., Balc, R., Kaminski, M.A. & Filipescu, S. 2011. Integrated biostratigraphy and palaeoenvironments of an upper Santonian – upper Campanian succession from the southern part of the Eastern Carpathians, Romania. Cretaceous Research 32, 575–90.Google Scholar
Croce, J. D. 1996. Eastern Venezuela Basin: sequence stratigraphy and and structural evolution. Published PhD thesis, 395 pp. Houston, TX: Rice University, Department of Geology and Geophysics.Google Scholar
Cushman, J. A. 1910. A monograph of the foraminifera of the north Pacific Ocean, Part 1, Astrorhizidae and Lituilidae. United States National Museum Bulletin 71, 1134.Google Scholar
Cushman, J. A. 1918. The Foraminifera of the Atlantic Ocean. Part 1: Astrorhizidae. United States National Museum Bulletin 104 (1), 1111.Google Scholar
Cushman, J. A. 1937. A monograph of the foraminiferal family Valvulinidae. Cushman Laboratory for Foraminiferal Research, Special Publication 8, 1210.Google Scholar
Cushman, J. A. & Renz, H. H. 1941. New Oligocene–Miocene Foraminifera from Venezuela. Contributions from the Cushman Laboratory for Foraminiferal Research 17, 127.Google Scholar
Díaz de Gamero, M. L. 1996. The changing course of the Orinoco River during the Neogene: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 123, 385402.Google Scholar
Drooger, C. W. & Kaasschieter, J. P. 1958. Foraminifera of the Orinoco–Trinidad–Paria Shelf. Report of the Orinoco Shelf Expedition, Verhandlungen Koninklijk Nederland Akademie Wetenschappelijke 4, 1108.Google Scholar
Gallagher, S. J., Duddy, I. R., Quilty, P. G., Smith, A. J., Wallace, M. W., Holdgate, G. R. & Boult, P. J. 2004. The use of Foraminiferal Colouration Index (FCI) as a thermal indicator and correlation with vitrinite reflectance in the Sherbrook Group, Otway Basin, Victoria. In Proceedings PESE Eastern Australasian Basins Symposium II (eds Boult, P. J., Johns, D. R. & Lang., S. C.), pp. 643–53. Adelaide: Petroleum Exploration Society of Australia.Google Scholar
Green, R. C., Kaminski, M. A. & Sikora, P. J. 2004. Miocene deep water agglutinated foraminifera from Viosca Knoll, offshore Louisiana (Gulf of Mexico). In Proceedings of the Sixth International Workshop on Agglutinated Foraminifera (eds Bubík, M. & Kaminski, M. A.), pp. 119–44. Grzybowski Foundation Special Publication.Google Scholar
Haq, B. U., Hardenbol, J. & Vail, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea level change. In Sea Level Changes – An Integrated Approach (eds Wilgus, C. K., Hastings, B. S., Posamentier, H., Van Wagoner, J., Ross, C. A. & Kendall, C. G. S. C.), pp. 71108. SEPM Special Publication.Google Scholar
Hayek, L.-A. C. & Buzas, M. A. 2010. Surveying Natural Populations: Quantitative Tools for Assessing Biodiversity, 2nd edition. New York: Columbia University Press.Google Scholar
Jones, R. W. 1998. Palaeonenvironmental interpretation of the Late Miocene and Pliocene of Trinidad based on micropalaeontological data. In Transactions of the 3rd Geological Conference of the Geological Society of Trinidad and Tobago and 14th Caribbean Geological Conference (eds Ali, W., A. Paul, A. & Young On, V.), pp. 88101. Port of Spain, Trinidad: Geological Society of Trinidad and Tobago.Google Scholar
Jones, R. W. & Charnock, M. A. 1985. ‘Morphogroups’ of agglutinating foraminifera, their life positions and feeding habits and potential applicability for (palaeo)ecological studies. Revue de Paléobiologie 4, 311–20.Google Scholar
Jones, R. W., Jones, N. E., King, A. D. & Shaw, D. 1999. Reservoir biostratigraphy of the Pedernales Field, Venezuela. In Biostratigraphy in Production and Development Geology (eds Jones, R. W. & Simmons, M. D.), pp. 243–58. London: Geological Society, Special Publication no. 152.Google Scholar
Kaminski, M. A., Silye, L. & Kender, S. 2005. Miocene deep-water agglutinated foraminifera from ODP Hole 909c: implications for the paleoceanography of the Fram Strait Area, Greenland Sea. Micropaleontology 51, 373403.Google Scholar
Kato, M. 1992. Benthic foraminifers from the Japan Sea: Leg 128. In Proceedings of the Ocean Drilling Program, Scientific Results (eds Pisciotto, K. A., Ingle, J. C. Jr., von Breymann, M. T. & Barron, J.) 128, 365–92.Google Scholar
Kender, S., Kaminski, M.A. & Jones, R.W. 2008 a. Oligocene deep-water agglutinated foraminifera from the Congo Fan, Offshore Angola: palaeoenvironments and assemblage distributions. In Proceedings of the Seventh International Workshop on Agglutinated Foraminifera (eds Kaminski, M. A. & Coccioni, R.), pp. 107–56. Grzybowski Foundation Special Publication 13.Google Scholar
Kender, S., Kaminski, M. A. & Jones, R. W. 2008 b. Early to Middle Miocene foraminifera from the deep-sea Congo Fan, offshore Angola. Micropalaeontology 54, 477568.Google Scholar
Koutsoukos, E. A. M. 2000. ‘Flysch-type’ foraminiferal assemblages in the Cretaceous of northeastern Brazil. In Proceedings of the Fifth International Workshop on Agglutinated Foraminifera (eds Hart, M. B., Kaminski, M. A. & Smart, C. W.), pp. 243–60. Grzybowski Foundation Special Publication 7.Google Scholar
Kugler, H. G. 2001. Treatise on the Geology of Trinidad. Part 4: Palaeocene to Holocene Formations. Basel: Museum of Natural History.Google Scholar
Kuhnt, W. & Kaminski, M. A. 1990. Palaeoecology of late Cretaceous to Palaeocene deep-water agglutinated foraminifera from the North Atlantic and Western Tethys. In Palaeoecology, Biostratigraphy and Taxonomy of Agglutinated Foraminifera. NATO-ASI Series C 327, 433505. Dordecht: Springer Science and Business Media.CrossRefGoogle Scholar
Magurran, A. E. 2004. Measuring Biological Diversity. Oxford: Blackwell Publishing.Google Scholar
Mancin, N. 2001. Agglutinated foraminifera from the epiligurian succession (Middle Eocene/Lower Miocene, northern Apennines, Italy): scanning electron microscopic characterization and palaeoenvironmental implications. Journal of Foraminiferal Research 31, 294308.Google Scholar
Matoba, Y. & Honma, N. 1986. Depth distribution of Recent benthic foraminifera off Nishitsugaru, eastern Sea of Japan. In Studies on Cenozoic Benthic Foraminifera in Japan (eds Matoba, Y. & Kato, M.), pp. 5378. Akita: Akita University Mining College.Google Scholar
McNeil, D. H., Issler, D. R. & Snowdon, L. R. 1996. Colour alteration, thermal maturity, and burial diagenesis in fossil foraminifers. Geological Survey of Canada Bulletin 499, 134.Google Scholar
Murray, J. W. & Alve, E. 2000. Do calcareous dominated shelf foraminiferal assemblages leave worthwhile ecological information after their dissolution? In Proceedings of the Fifth International Workshop on Agglutinated Foraminifera (eds Hart, M. B., Kaminski, M. A. & Smart, C. W..), pp. 311–31. Grzybowski Foundation Special Publication 7.Google Scholar
Nomura, R. 1992. Miocene benthic foraminifers at Sites 794, 795 and 797 in the Sea of Japan with reference to the foram sharp line in the Honshu Arc. In Proceedings of the Ocean Drilling Program, Scientific Results (eds Pisciotto, K. A., Ingle, J. C. Jr., von Breymann, M. T. & Barron, J.) 127/128, 493–540.Google Scholar
Olszewski, T. D. 2010. Diversity partitioning using Shannon's entropy and its relationship to rarefaction. In Quantitative Methods in Palaeobiology (eds Alroy, J. & Hunt, G.). pp. 95117. The Paleontological Society Special Paper 16. Ithaca: Paleontological Research Institution.Google Scholar
Pocknall, D. T., Wood, L. J., Geen, A. F., Harry, B. E. & Hedlund, R. W. 2001. Integrated palaeontological studies of Pliocene to Pleistocene deposits of the Orinoco Delta, eastern Venezuela and Trinidad. In IX International Palynological Congress (eds Goodman, D. K. & Clarke, R. T.). pp. 319–26. Houston, TX: Ammerican Association of Stratigraphic Palynologists Foundation.Google Scholar
Proistosescu, C., Huybers, P. & Maloof, A. C. 2012. To tune or not to tune: detecting orbital variability in Oligo–Miocene climate records. Earth and Planetary Science Letters 325–26, 100107.Google Scholar
Rai, A. K. & Maurya, A. S. 2009. Effect of Miocene Palaeoceanographic changes on the benthic foraminiferal diversity at ODP Site 754A (southeastern Indian Ocean). Indian Journal of Marine Sciences 38, 423–31.Google Scholar
Renz, H. H. 1948. Stratigraphy and fauna of the Agua Salada Group, State of Falcón, Venezuela. Geological Society of America Memoir 32, 1219.Google Scholar
Stainforth, R. M. 1948. Description, correlation, and palaeoecology of Tertiary Cipero Marl Formation, Trinidad, BWI. American Association of Petroleum Geologists Bulletin 32, 1292–330.Google Scholar
Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. 2011. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Science Reviews 104, 111–42.Google Scholar
Wilson, B. 2006. Trouble in Paradise? A comparison of 1953 and 2005 benthonic foraminiferal seafloor assemblages at the Ibis Field, offshore eastern Trinidad, West Indies. Journal of Micropalaeontology 25, 157–64.Google Scholar
Wilson, B. 2007. Recent Ostracoda of the Coconut and Mahogany Fields, Offshore SE Trinidad. Caribbean Journal of Science 43, 181–8.Google Scholar
Wilson, B. 2008 a. Distributions of ostracod (Crustacea) biofacies on the continental shelf off south-east Trinidad, western central Atlantic Ocean, suggest the location of an offshore river-induced front within the Orinoco Plume. Senckenbergiana Lethaea 88, 199211.Google Scholar
Wilson, B. 2008 b. Using SHEBI (SHE Analysis for Biozone Identification): to proceed from the top down or the bottom up? A discussion using two Miocene foraminiferal successions from Trinidad, West Indies. Palaios 23, 636–44.Google Scholar
Wilson, B. 2010. The significance of iron-stained foraminifera off SE Trinidad, West Indies, Western Central Atlantic Ocean. Geological Magazine 147, 728–36.Google Scholar
Wood, L. J. 2000. Chronostratigraphy and tectonostratigraphy of the Columbus Basin, eastern Offshore Trinidad. American Association of Petroleum Geologists Bulletin 84, 1905–28.Google Scholar
Supplementary material: File

Wilson Supplementary Material

Table

Download Wilson Supplementary Material(File)
File 12.7 KB