Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T06:40:09.717Z Has data issue: false hasContentIssue false

A basement culmination in the Scandinavian Caledonides formed by antiformal stacking (Bångonåive, northern Sweden)

Published online by Cambridge University Press:  01 May 2009

R. O. Greiling
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K..
R. A. Gayer
Affiliation:
Department of Geology, University of Wales, P.O. Box 914, Cardiff CFI 3YE, U.K.
M. B. Stephens
Affiliation:
Sveriges Geologiska Undersökning, Box 670, 751 28 Uppsala, Sweden

Abstract

The Bångonåive basement culmination, a doubly plunging antiform trending SW-NE in its southern part and SSW-NNE in the north, is part of a major Caledonian antiform in north-central Scandinavia. Crystalline, Proterozoic basement rocks (mainly syenite) are unconformably overlain by a sedimentary cover including tillites at the base, passing up into arkoses, quartzites and shales, capped by black phyllites. This sequence is correlated with the Varangian to Cambrian succession of the Baltoscandian platform farther east. Detailed mapping revealed a succession of five basement-cover horses, which represent the accessible part of an antiformal stack exposed beneath the Middle and Upper Allochthons and taken here as the Lower Allochthon structural level.

Caledonian deformation varies in intensity from penetrative near thrusts and in pelitic rocks to very weak in the more internal parts of the horses. A penetrative foliation is associated with the growth of white mica and rare biotite. This early fabric is overprinted by a mylonitic foliation related to localized shear zones, which separate the structural units within the Lower Allochthon. Stretching and mineral lineations trend WNW-ESE and related shear-sense criteria indicate transport (top) towards the ESE. Structural units (horses) are thrust into an antiformal stack and folded around the lowermost horse exposed, which is itself folded into an anticlinal lift-off fold. Towards the northeast, the antiformal stack is overprinted by a pop-up and an out-of-sequence thrust. The latter breached the roof of the Lower Allochthon and transported part of it over the Middle and Upper Allochthons. Further folds are associated with lateral and oblique ramps in the Lower Allochthon. These structures relate very well with the complex fold pattern previously observed in the higher structural units and thrust tectonics provides a straightforward genetic explanation for these folds. Therefore, earlier genetic models of the Bångonåive basement culmination as a simple imbrication of basement into higher units, as a buckling structure or as a gravitational dome structure are rejected here. The structural information, supported by gravimetric data, is consistent with an essentially flat regional detachment surface (2° dip) extending from the present external Caledonian margin to the base of the Bångonåive antiformal stack.

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, P. 1986. Berggrunden på kontinentalsockeln Sveriges Geologiska Undersökning Rapporter och meddelanden 47, 1101.Google Scholar
Anderson, A., Dahlmann, B., Gee, D. G. & Snäll, S. 1985. The Scandinavian alum shales. Sveriges Geologiska Undersökning Ca 56, 150.Google Scholar
Bax, G. 1989. Caledonian structural evolution and tectonostratigraphy in the Rombak-Sjangeli Window and its covering sequences, northern Scandinavian Caledonides Norges Geologiske Undersokelse Bulletin 415, 87104.Google Scholar
Bierlein, F. P. & Greiling, R. O. 1993. New constraints on the basal sole thrust at the eastern Caledonian margin in N. Sweden Geologiska Föreningens i Stockholm Förhandlingar 115, 109–16.Google Scholar
Björklund, L. 1985. The Middle and Lower Allochthons in the Akkajaure-Tysfjord area, northern Scandinavian Caledonides. In The Caledonide Orogen-Scandinavia and Related Areas (eds Gee, D. G. and Sturt, B. A.), pp. 515–28. Chichester: Wiley.Google Scholar
Boyer, S. E. & Elliot, D. 1982. Thrust systems Bulletin of the American Association of Petroleum Geologists 66, 11961230.Google Scholar
Dallmeyer, R. D. 1990. 40Ar/39Ar mineral age record of a polyorogenic evolution within the Seve and Köli nappes, Trøndelag, Norway Tectonophysics 179, 199226.Google Scholar
Dallmeyer, R. D. & Gee, D. G. 1988. Polyorogenic 40Ar/39Ar mineral age record in the Seve and Köli nappes of the Gäddede area, northwestern Jämtland, central Scandinavian Caledonides Journal of Geology 96, 181–98.Google Scholar
Davis, D. J., Suppe, F. & Dahlen, F. A. 1983. Mechanics of foldand-thrust belts and accretionary wedges Journal of Geophysical Research 88, 1153–72.CrossRefGoogle Scholar
Dohme, G. & Greiling, R. 1981. Structure of the Bångfjället Complex as constrained by geological and geophysical data Earth Evolution Sciences 1, 3842.Google Scholar
Elliot, D. & Johnson, M. R. W. 1980. The structural evolution of the northern part of the Moine thrust zone Transactions of the Royal Society of Edinburgh: Earth Sciences 71, 6996.CrossRefGoogle Scholar
Gayer, R. A. & Greiling, R. O. 1989. Caledonian nappe geometry in north-central Sweden and basin evolution on the Baltoscandian margin Geological Magazine 126, 499513.CrossRefGoogle Scholar
Gayer, R. A., Rice, A. H. N., Roberts, D., Townsend, C. & Welbon, A. 1987. Restoration of the Caledonian Baltoscandian margin from balanced cross-sections: the problem of excess continental crust Transactions of the Royal Society of Edinburgh: Earth Sciences 78, 197217.CrossRefGoogle Scholar
Gee, D. G. 1972. The regional geological context of the Tåsjöuranium project, Caledonian front, central Sweden. Sveriges Geologiska Undersökning C 671, 136.Google Scholar
Gee, D. G. 1980. Basement-cover relationships in the central Scandinavian Caledonides Geologiska Föreningens i Stockholm Förhandlingar 102, 455–7.CrossRefGoogle Scholar
Gee, D. G. & Zachrisson, E. 1979. The Caledonides in Sweden. Sveriges Geologiska Undersökning C 769, 148.Google Scholar
Gee, D. G., Kumpulainen, R., Roberts, D., Stephens, M. B., Thon, A. & Zachrisson, E. 1985. Scandinavian Caledonides-tectonostratigraphic map. Sveriges Geologiska Undersökning Ba 35.Google Scholar
Gee, D. G., Kumpulainen, R. & Thelander, T. 1978. The Tåsjö décollement, central Swedish Caledonides. Sveriges Geologiska Undersökning C 742, 135.Google Scholar
Greiling, R. O. 1981. Caledonian thrusting in the basement rocks of the Børgefjell window (north-central Scandinavian Caledonides) as related to major nappe transport. Terra Cognita 1, 47.Google Scholar
Greiling, R. O. 1982. Precambrian basement complexes in the north-central Scandinavian Caledonides and their Caledonian tectonic evolution Geologische Rundschau 71, 8593.Google Scholar
Greiling, R. O. 1985. Strukturelle und metamorphe Entwicklung an der Basis grosser, weittransportierter Deckeneinheiten am Beispiel des Mittleren Allochthons in den zentralen Skandinavischen Kaledoniden (Stalon-Deckenkomplex in Västerbotten, Schweden) Geotektonische Forschungen 69, 1129.Google Scholar
Greiling, R. O. 1989. The Middle Allochthon in Västerbotten, northern Sweden: tectonostratigraphy and tectonic evolution. In The Caledonide Geology of Scandinavia (ed. Gayer, R. A.), pp. 6977. London: Graham & Trotman.Google Scholar
Häggbom, O. 1980. Polyphase deformation of a discontinuous nappe in the central Scandinavian Caledonides Geologiska Föreningens i Stockholm Förhndlingar 100, 349–54.Google Scholar
Hatcher, R. D. & Hooper, R. J. 1992. Evolution of crystalline thrust sheets in the internal parts of mountain chains. In Thrust Tectonics (ed. McClay, K. R.), pp. 217–33. London: Chapman & Hall.CrossRefGoogle Scholar
Hossack, J. R. 1983. A cross-section through the Scandinavian Caledonides constructed with the aid of branch-line maps Journal of Structural Geology 5, 103–11.CrossRefGoogle Scholar
Hossack, J. R. & Cooper, M. A. 1986. Collision tectonics in the Scandinavian Caledonides. In Collision Tectonics (eds Coward, M. P. and Ries, A. C.), pp. 287304. Special Publication, Geological Society of London no. 19.Google Scholar
Hubich, C. A., Palm, H., Dyrelius, D. & Kristoffersen, Y. 1989. Deformation of the Baltic continental crust during Caledonide intracontinental subduction: views from seismic reflection data Geology 17, 423–5.Google Scholar
Kulling, O. 1933. Bergbyggnaden inom Björkvattnet-Virisenområdet i Västerbottens-fjällens centrala del Geologiska Föreningens i Stockholm Förhandlingar 55, 167442.CrossRefGoogle Scholar
Kulling, O. 1955. Den Kaledoniska fjällkedjans berggrund inom Västerbottens län. Sveriges Geologiska Undersökning Ca 37, 101296.Google Scholar
Lindqvist, T. 1988. Tectonic implications of U-, Mo- and V-enriched graphitic phyllites in the Høgtuva and Nasafjäll Windows, Scandinavian Caledonides Norsk Geologisk Tidsskrift 68, 187–99.Google Scholar
Mitra, S. & Namson, J. 1989. Equal-area balancing American Journal of Science 289, 563–99.Google Scholar
Morley, C. K. 1986. The Caledonian thrust front and palinspastic restorations in the southern Norwegian Caledonides Journal of Structural Geology 18, 753–65.CrossRefGoogle Scholar
Palm, H., Gee, D. G., Dyrelius, D. & Björklund, L. 1991. A reflection seismic image of Caledonian structure in central Sweden. Sveriges Geologiska Undersökning Ca 75, 136.Google Scholar
Bamberg, H. 1966. The Scandinavian Caledonides as studied by centrifuged dynamic models Bulletin of the Geological Institutions of the University of Uppsala 43, 172.Google Scholar
Ramberg, H. 1981. The role of gravity in orogenic belts. In Thrust and Nappe Tectonics (eds McClay, K. R. and Price, N. J.), pp. 125–40. Special Publication, Geological Society of London no. 9.Google Scholar
Rickard, D. T., Willdén, M. Y., Marinder, N.-E. & Donelly, T. H. 1979. Studies on the genesis of the Laisvall Sandstone lead-zinc deposit, Sweden Economic Geology 74, 1255–85.Google Scholar
Roberts, D. & Gee, D. G. 1985. An introduction to the structure of the Scandinavian Caledonides. In The Caledonide Orogen-Scandinavia and Related Areas (eds Gee, D. G. and Sturt, B. A.), pp. 5568. Chichester: Wiley.Google Scholar
Snäll, S. 1988. Mineralogy and maturity of the alum shales of south-central Jämtland, Sweden. Sveriges Geologiska Undersökning C 818, 146.Google Scholar
Stephens, M. B. 1977. Stratigraphy and relationship between folding, metamorphism and thrusting in the Tärna-Björkvattnet area, northern Swedish Caledonides. Sveriges Geologiska Undersökning C 726, 1146.Google Scholar
Stephens, M. B. & Gee, D. G. 1989. Terranes and polyphase accretionary history in the Scandinavian Caledonides. Geological Society of America, Special Paper 230, 1730.Google Scholar
Stephens, M. B., Gustavson, M., Ramberg, I. B. & Zachrisson, E. 1985. The Caledonides of central-north Scandinavia-a tectonostratigraphic overview. In The Caledonide Orogen-Scandinavia and related areas (eds Gee, D. G. and Sturt, B. A.), pp. 135–62. Chichester: Wiley.Google Scholar
Zachrisson, E. 1969. Caledonian geology of northern Jämtlandsouthern Västerbotten. Sveriges Geologiska Undersökning C 644, 133.Google Scholar
Zachrisson, E. 1973. The westerly extension of Seve rocks within the Seve-Kö1i Nappe Complex in the Scandinavian Caledonides Geologiska Föreningens i Stockholm Förhandlingar 95, 243–51.CrossRefGoogle Scholar