Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T14:44:39.176Z Has data issue: false hasContentIssue false

Banded Pumice in a Chilean Ignimbrite

Published online by Cambridge University Press:  01 May 2009

John Edward Guest
Affiliation:
University of London Observatory, Mill Hill Park, London, N.W.7.

Summary

Banded pumice from a late-Tertiary ignimbrite in northern Chile is descrived and its origin considered. Other phenomena within the ignimbrite, including a variation in mineralogy between the upper and lower units of the flow, are described.

Type
Articles
Copyright
Copyright © Cambridge University Press 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blake, D. H., Elwell, R. W. D., Gibson, I. L., Skelhorn, R. R. & Walker, G. P. L. 1956. Some relationships from the intimate association of acid and basic magmas. Q. Jl geol. Soc. Lond., 122, 3149.Google Scholar
Boyd, F. R. 1959. Hydrothermal investigations of amphiboles. In Researches in Geochemistry, New York: Wiley, p. 377.Google Scholar
Brüggen, J., 1950. Fundamentos de la geologia de Chile. Santiago de Chile, Jnstituto Geografico Militar.Google Scholar
Dingman, R. J. 1965. Cuadrangulo San Pedro de Atacama. Santiago, Inst. Invest. Geol., Carta Geol. Chile, Carta 14.Google Scholar
Fenner, C. N. 1950. The chemical kinetics of the Katmai eruption Am. J. Sci., 248, 593627 and 697725.CrossRefGoogle Scholar
George, W. O. 1924. The relation of the physical properties of natural glass to their chemical composition. J. Geol., 32, 353372.CrossRefGoogle Scholar
Hollingworth, S. E. 1964. Dating the uplift of the Andes. Nature, Lond., 201, 1720.CrossRefGoogle Scholar
King, B. C. 1965. The nature of basic igneous rocks and their relations with associated acid rocks. Part VI. Sci. Progr., 53, 437446.Google Scholar
Larsen, E. S. & Irving, J. 1938. Petrologic results of a study of the minerals from the Tertiary volcanic rocks of the San Juan region, Colorado. 5. The amphiboles. Am. Miner., 22, 889898.Google Scholar
Larsen, E. S. Gonyer, F. A. & Irving, J. 1938. Petrologic results of a study of the minerals from the Tertiary volcanic rocks of the San Juan region, Colorado. 6. Biotite. Am. Miner., 22, 898905.Google Scholar
MacDonald, G. A. & Katsura, T. 1965. Eruption of the Lassen Peak, Cascade Range, California, in 1915: example of mixed magmas. Bull. geol. Soc. Am., 76, 475482.CrossRefGoogle Scholar
Rutland, R. W. R., Guest, J. E. & Grasty, R. L. 1965. Isotopic ages and Andean uplift. Nature, Lond., 208, 677–8.CrossRefGoogle Scholar
Scott, R. 1966. Origin of chemical variations within ignimbrite cooling units. Am. J. Sci., 264, 273288.CrossRefGoogle Scholar
Smith, R. L. 1960. Ash flows. Bull. geol. Soc. Amer., 71, 795842.CrossRefGoogle Scholar
Truesdell, A. H. 1966. Ion-exchange constants of natural glasses by the electrode method. Am. Miner., 51, 110122.Google Scholar
Walker, G. P. L. 1959. Tertiary welded tuffs in eastern Iceland. Q. Jl geol. Soc. Lond., 118, 275293.CrossRefGoogle Scholar
Williams, H. 1952. Volcanic history of the Meseta Central Occidental, Costa Rica. Univ. Calif. Pub., Dept. Geol. Sci., 29, 145180.Google Scholar
Williams, H. Curtis, G. H. & Juhle, W. 1956. Mount Katmai and the Valley of Ten Thousand Smokes, Alaska (a new interpretation of the great eruption of 1912). Proc. 8th Pacific Sci. Congr., 2, 129.Google Scholar