Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T09:26:36.786Z Has data issue: false hasContentIssue false

The application of trend surface analysis to directional data

Published online by Cambridge University Press:  01 May 2009

R. A. Shakesby
Affiliation:
Geography Department, University College of Swansea, Singleton Park, Swansea SA2 8PP

Summary

Trend surface analysis has been used widely in geology and geomorphology but only rarely has it been applied to directional data. This neglect stems from the inapplicability of normal trend surface procedures to such data. An adaptation of normal trend surface procedures specifically designed for use with directional data is, however, available as a FORTRAN IV computer program. This technique is described and its usefulness in generalizing regional patterns of flow is illustrated by applying it to data representing ice flow direction in Central Scotland.

Type
Articles
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agterberg, F. P., Hills, L. V. & Trettin, H. P. 1967. Paleocurrent trend analysis of a delta in the Bjorne formation (Lower Triassic) of Northwestern Melville Island, Arctic Archipelago. J. sedim. Petrol. 37 852–62.Google Scholar
Allen, P. & Krumbein, W. C. 1962. Secondary trend components in the top Ashdown pebble bed, a case history. J. Geol. 70 507–38.CrossRefGoogle Scholar
Burke, M. J. 1969. The Forth Valley: an ice-moulded lowland. Trans. Inst. Br. Geogr. 48 51–9.CrossRefGoogle Scholar
Chorley, R. J. 1964. An analysis of the areal distribution of soil size facies on the Lower Greensand rocks of east-central England by the use of trend surface analysis. Geol. Mag. 101 314–21.CrossRefGoogle Scholar
Chorley, R. J. 1969. The elevation of the Lower Greensand ridge, south-east England. Geol. Mag. 106 231–48.CrossRefGoogle Scholar
Curray, J. R. 1956. The analysis of two dimensional orientation data. J. Geol. 64 117–31.CrossRefGoogle Scholar
Dawson, K. R. & Whitten, E. H. T. 1962. The quantitative mineralogical composition and variation of the Lacome, LaMotte, and Preissac Granite Complex, Quebec, Canada. J. Petrol. 3 137.CrossRefGoogle Scholar
Elliott, D. 1965. The quantitative mapping of directional minor structures. J. Geol. 73 865–80.CrossRefGoogle Scholar
Fox, W. T. 1967. Fortran IV program for vector trend analyses of directional data. Kans. Geol. Surv. Computer Contr. 11.Google Scholar
Gray, J. M. 1972. Trends through clusters. Area. 4 275–9.Google Scholar
Hall, A. 1973. The median surface: a new type of trend surface. Geol. Mag. 110 467–72.CrossRefGoogle Scholar
Harbaugh, J. W. & Merriam, D. F. 1968. Computer Applications in Stratigraphic Analysis. New York: Wiley.Google Scholar
Harrison, W. 1957. New technique for three-dimensional fabric analysis of till and englacial debris containing particles from 3 to 40 mm in size. J. Geol. 65 98106.CrossRefGoogle Scholar
Hill, A. R. 1968. An experimental test of the field technique of till macrofabric analysis. Transl Inst. Br. Geogr. 45 93105.CrossRefGoogle Scholar
Kauranne, L. K. 1960. A statistical study of stone orientation in glacial till. Bull. Commn géol. Finl. 188 8797.Google Scholar
Krüger, J. 1973. Operator variance in orientation measurements in till macrofabric analyses. Bull. geol. Inst. Uppsala 5 117–25.Google Scholar
Krumbein, W. C. 1959. Trend surface analysis of contour-type maps with irregular control-point spacing. J. Geophys. Res. 64 823–34.CrossRefGoogle Scholar
Krumbein, W. C. & Graybill, F. A. 1965. An Introduction to Statistical Models in Geology. New York: McGraw-Hill.Google Scholar
Merriam, D. F. & Harbaugh, J. W. 1964. Trend-surface analysis of regional and residual components of geologic structure in Kansas. Kans. State Geol. Surv. Spec. Publ. 11.Google Scholar
Norcliffe, G. B. 1969. On the use and limitations of trend-surface models. Can. Geogr. 13 338–48.CrossRefGoogle Scholar
Peikert, E. W. 1965. Model for three-dimensional mineralogical variation in granitic plutons based on the Glen Alpine Stock, Sierra Nevada, California. Bull. geol. Soc. Am. 76 331–48.CrossRefGoogle Scholar
Potter, P. E. & Pettijohn, F. J. 1977. Paleocurrents and Basin Analysis, 2nd ed., pp. 374–80. New York: Springer-Verlag.CrossRefGoogle Scholar
Price, R. J. 1975. The glaciation of west-central Scotland – a review. Scott. geogr. Mag. 91 134–45.Google Scholar
Roberts, M. C. & Mark, D. M. 1970. The use of trend surfaces in till fabric analysis. Can. J. Earth Sci. 7 1179–84.CrossRefGoogle Scholar
Robinson, G. 1972. Trials on trends through clusters of cirques. Area. 4 104–12.Google Scholar
Rose, J. 1974. Small scale variability of some sedimentary properties of lodgement till and slumped till. Proc. geol. Ass. Lond. 85 239–55.CrossRefGoogle Scholar
Rose, J. & Letzer, J. M. 1975. Drumlin measurements: a test of the reliability of data derived from 1:25000 scale topographic maps. Geol. Mag. 112 361–71.CrossRefGoogle Scholar
Shakesby, R. A. 1978. Glacial dispersal of erratics from Lennoxtown, Stirlingshire. Scott. J. Geol. 14 81–6.CrossRefGoogle Scholar
Steinmetz, R. 1962. Analysis of vectorial data. J. sedim. Petrol. 32 801–12.Google Scholar
Whitten, E. H. T. 1975. The practical use of trend-surface analyses in the geological sciences. In Display and Analysis of Spatial Data (ed. Davis, J. C. & McCullagh, M. J.), pp. 282–97.Google Scholar
Young, J. A. T. 1969. Variations in till macrofabric over very short distances. Bull. geol. Soc. Am. 80 2343–52.CrossRefGoogle Scholar