Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T02:26:01.609Z Has data issue: false hasContentIssue false

Zircon U–Pb ages, major and trace elements, and Hf isotope characteristics of the Tiantangzhai granites in the North Dabie orogen, Central China: tectonic implications

Published online by Cambridge University Press:  18 December 2013

XIN DENG
Affiliation:
Faculty of Earth Science, China University of Geosciences Wuhan, Wuhan 430074, China Wuhan Institute of Geology and Mineral Resources, Wuhan 430205, China Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences Wuhan, Wuhan 430074, China
KUNGUANG YANG*
Affiliation:
Faculty of Earth Science, China University of Geosciences Wuhan, Wuhan 430074, China Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences Wuhan, Wuhan 430074, China
ALI POLAT
Affiliation:
Faculty of Earth Science, China University of Geosciences Wuhan, Wuhan 430074, China Department of Earth and Environmental Sciences, University of Windsor, Windsor, ON, CanadaN9B 3P4
TIMOTHY M. KUSKY
Affiliation:
Faculty of Earth Science, China University of Geosciences Wuhan, Wuhan 430074, China State Key Laboratory of Geological Processes and Mineral Resources and Three Gorges Geohazards Research Centre, Ministry of Education, China University of Geosciences Wuhan, Wuhan 430074, China
KAIBIN WU
Affiliation:
Faculty of Earth Science, China University of Geosciences Wuhan, Wuhan 430074, China Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences Wuhan, Wuhan 430074, China
*
Author for correspondence: [email protected]

Abstract

Cretaceous granites are widespread in the North Dabie orogen, Central China, but their emplacement sequence and mechanism are poorly known. The Tiantangzhai Complex in the North Dabie Complex is the largest Cretaceous granitic suite consisting of six individual intrusions. In this study, zircon U–Pb ages are used to constrain the crystallization and protolith ages of these intrusions. The Shigujian granite is a syn-tectonic intrusion with an age of 141 Ma. This granite was emplaced under a compressional regime. Oscillatory rims of zircons have yielded two peaks at 137±1 Ma and 125±1 Ma. The 137±1 Ma peak represents the beginning of orogenic extension and tectonic collapse, whereas the 125±1 Ma peak represents widespread granitic magmatism. Zircon cores have yielded concordant ages between 812 and 804 Ma, which indicate a crystallization age for the protolith. The Tiantangzhai granites show relatively high Sr contents and high La/Yb and Sr/Y ratios. The Shigujian granite has positive Eu anomalies resulting from partial melting of a plagioclase-rich source in an over-thickened crust. Correspondingly, in situ Lu–Hf analyses from zircons yield high negative εHf(t) values from −24.8 to −26.6, with two-stage Hf model ages from 2748±34 to 2864±40 Ma, suggesting that the magmas were dominantly derived from partial melting of middle to lower crustal rocks. The Dabie orogen underwent pervasive NW–SE extension at the beginning of the early Cretaceous associated with subduction of the Palaeo-Pacific plate beneath eastern China.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Blichert-Toft, J. & Albarede, F. 1997. The Lu–Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters 148, 243–58.CrossRefGoogle Scholar
Brown, M. 2001. Orogeny, migmatites and leucogranites: a review. Indian Academy of Science (Earth and Planetary Science) 110, 313–36.Google Scholar
Bryant, D. L., Ayers, J. C., Gao, S., Miller, C. F. & Zhang, H. 2004. Geochemical, age, and isotopic constraints on the location of the Sino–Korean/Yangtze suture and evolution of the Northern Dabie Complex, east central China. Geological Society of American Bulletin 116, 698717.Google Scholar
Chen, B., Jahn, B. M. & Wei, C. J. 2002. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: trace element and Nd–Sr isotope evidence. Lithos 60, 6788.Google Scholar
Chen, L., Ma, C. Q., She, Z, B., Mason, R., Zhang, J. Y. & Zhang, C. 2009. Petrogenesis and tectonic implications of A-type granites in the Dabie orogenic belt, China: geochronological and geochemical constraints. Geological Magazine 146, 638–51.Google Scholar
Chu, N. C., Taylor, R. N. & Chavagnac, V. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atom Spectrometry 17, 1567–74.Google Scholar
Cong, B. L. (ed.) 1996. Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan–Sulu Region of China. Beijing: Science Press, 224 pp.Google Scholar
Defant, M. J., Xu, J. F., Kepezhinskas, P., Wang, Q., Zhang, Q. & Xiao, L. 2002. Adakites: some variations on a theme. Acta Petrologica Sinica 18, 129–42.Google Scholar
Deng, X., Wu, K. B. & Yang, K. G. 2013. Emplacement and deformation of Shigujian syntectonic granite in the center of the Dabie orogen: implications for tectonic regime transformation. Science China Earth Sciences 56, 980–92.Google Scholar
Drummond, M. S. & Defant, M. J. 1990. A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research 95, 21503–21.Google Scholar
Gao, S., Qiu, Y. & Ling, W. L. 2002. SHRIMP single zircon U–Pb geochronology of eclogites from Yingshan and Xiongdian. Earth Science – Journal of China University of Geosciences 27, 558–64.Google Scholar
Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O'Reilly, S. Y., Xu, X. & Zhou, X. 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237–69.Google Scholar
Hacker, B. R., Ratschbacher, L., Webb, L., Ireland, T., Walker, D. & Dong, S. W. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling–Dabie Orogen, China. Earth and Planetary Science Letters 161, 215–30.Google Scholar
Hacker, B. R., Wallis, S. R., McWilliams, M. O. & Gans, P. B. 2009. 40Ar–39Ar constraints on the tectonic history and architecture of the ultrahigh-pressure Sulu orogen. Journal of Metamorphic Geology 27, 827–44.Google Scholar
Hacker, B. R., Wallis, S. R., Ratschbacher, L., Grove, M. & Gehrels, G. E. 2006. High-temperature geochronology constraints on the tectonic history and architecture of the ultra-high-pressure Dabie–Sulu Orogen. Tectonics 25, TC5006, doi: 10.1029/2005TC001937.Google Scholar
Hermann, J., Rubatto, D., Korsakov, A. & Shatsky, V. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology 141, 6682.Google Scholar
Huang, F., Li, S. G., Dong, F., Li, Q. L., Chen, F. K., Wang, Y. & Yang, W. 2007. Recycling of deeply subducted continental crust in the Dabie Mountains, central China. Lithos 96, 151–69.Google Scholar
Jahn, B. M., Wu, F., Lo, C. H. & Tsai, C. H. 1999. Crustal–mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology 157, 119–46.Google Scholar
Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A. & Kinny, P. D. 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439, 580–3.CrossRefGoogle ScholarPubMed
Li, S. Z., Kusky, T. M., Zhao, G. C., Liu, X., Zhang, G. W., Kopp, H. & Wang, L. 2010. Two-stage Triassic exhumation of HP–UHP terranes in the western Dabie orogen of China: constraints from structural geology. Tectonophysics 490, 267–93.Google Scholar
Liou, J. G., Ernst, W. G., Zhang, R. Y., Tsujimori, T. & Jahn, B. M. 2009. Ultrahigh-pressure minerals and metamorphic terranes – the view from China. Journal of Asian Earth Sciences 35, 199231.CrossRefGoogle Scholar
Liu, Y. C., Gu, X. F., Rolfo, F. & Chen, Z. Y. 2011 a. Ultrahigh-pressure metamorphism and multistage exhumation of eclogite of the Luotian dome, North Dabie Complex Zone (central China): evidence from mineral inclusions and decompression textures. Journal of Asian Earth Sciences 42, 607–17.Google Scholar
Liu, S., Hu, R., Gao, S., Feng, C., Zhong, H., Qi, Y., Wang, T., Feng, G. & Yang, Y. 2011 b. U–Pb zircon ages, geochemical and Sr–Nd–Pb isotopic constraints on the dating and origin of intrusive complexes in the Sulu orogen, eastern China. International Geology Review 53, 6183.Google Scholar
Liu, Y. S., Hu, Z. C., Gao, S., Gunther, D., Xu, J., Gao, C. G. & Chen, H. H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying at internal standard. Chemical Geology 257, 3443.CrossRefGoogle Scholar
Liu, X. C., Jahn, B. M., Liu, D. Y., Dong, S. W. & Li, S. Z. 2004. SHRIMP U–Pb zircon dating of a metagabbro and eclogites from western Dabieshan (Hong'an Block), China, and its tectonic implications. Tectonophysics 394, 171–92.CrossRefGoogle Scholar
Liu, D. Y., Jian, P., Kroner, A. & Xu, S. T. 2006. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie–Sulu UHP complex, China. Earth and Planetary Science Letters 250, 650–66.Google Scholar
Liu, Y. C., Li, S. G., Gu, X. F., Xu, S. T. & Chen, G. B. 2007 b. Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central China. Journal of Metamorphic Geology 25, 975–89.CrossRefGoogle Scholar
Liu, Y. C., Li, S. G. & Xu, S. T. 2007 a. Zircon SHRIMP U–Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China: implications for decoupling within subducted continental crust. Lithos 96, 170–85.Google Scholar
Liu, F. L. & Liou, J. G. 2009. Zircon as the best mineral for PT–time history of UHP metamorphism: a review on mineral inclusions and U–Pb SHRIMP ages of zircons from the Dabie–Sulu UHP rocks. Journal of Asian Earth Sciences 40, 139.Google Scholar
Ludwig, K. R. 2001. Users Manual for Isoplot/Ex (rev. 2.49): A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 1a, 55 pp.Google Scholar
Ma, C. Q., Ehlers, C., Xu, C. H. & Li, Z. C. & Yang, K. G. 2000. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane: constraints from geochemistry and Nd–Sr isotope systematics. Precambrian Research 102, 279301.Google Scholar
Ma, C. Q., Li, Z. C., Ehlers, C., Yang, K. G. & Wang, R. J. 1998. A postcollisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh pressure metamorphic zone, east-central China. Lithos 45, 431–56.Google Scholar
Ma, C. Q., Yang, K. G., Ming, M. L. & Ling, G. C. 2004. The timing of tectonic transition from compression to extension in Dabieshan: evidence from Mesozoic granites. Science China Earth Sciences 47, 453–62.Google Scholar
Okay, A. I., Xu, S. T. & Şengör, A. M. C. 1989. Coesite from the Dabie Shan eclogites, central China. European Journal of Radiology 1, 595–8.Google Scholar
Ratschbacker, L., Hacker, B. R., Webb, L. E., McWilliams, M., Ireland, T., Dong, S. W., Calvert, A., Chateigner, D. & Wenk, H. R. 2000. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan–Lu fault. Journal of Geophysical Research 105, 13303–38.Google Scholar
Rumble, D., Liou, J. G. & Jahn, B. M. 2003. Continental crust subduction and ultrahigh pressure metamorphism. Treatise Geochemistry 3, 293319.Google Scholar
Scherer, E., Münker, C. & Mezger, K. 2001. Calibration of the lutetium–hafnium clock. Science 293, 683–7.Google Scholar
Sun, S. S. & McDonough, W. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tsai, C. H., Lo, C. H., Liou, J. G. & Jahn, B. M. 2000. Evidence against subduction-related magmatism for the Jiaoziyan Gabbro, northern Dabie Shan, China. Geology 28, 943–6.Google Scholar
Vanderhaeghe, O. & Teyssie, C. 2001. Partial melting and flow of orogens. Tectonophysics 342, 451–72.Google Scholar
Wang, X., Chen, J., Griffin, W. L., O'Reilly, S. Y., Huang, P. Y. & Li, X. 2011 a. Two stages of zircon crystallization in the Jingshan monzogranite, Bengbu Uplift: implications for the syn-collisional granites of the Dabie–Sulu UHP orogenic belt and the climax of movement on the Tan–Lu fault. Lithos 122, 201–13.Google Scholar
Wang, X. M., Liou, J. G. & Mao, H. K. 1989. Coesite-bearing eclogite from Dabie Mountains in Central China. Geology 17, 1085–8.Google Scholar
Wang, Y. S., Wei, X., Xiang, B. W., Zhu, G., Niu, M. L. & Xie, C. L. 2010. Motion of the Xiaotian–Mozitan shear zone in early Cretaceous and its constraints for evolution of the North Dabie dome. Acta Geologica Sinica 84, 618–30.Google Scholar
Wang, Q., Wyman, D. A., Xu, J. F., Jian, P., Zhao, Z. H., Li, C. F., Xu, W., Ma, J. L. & He, B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta 71, 2609–36.Google Scholar
Wang, Y. S., Xiang, B. W., Zhu, G. & Jiang, D. Z. 2011 b. Structural and geochronological evidence for Early Cretaceous orogen-parallel extension of the ductile lithosphere in the northern Dabie orogenic belt, East China. Journal of Structural Geology 33, 362–80.Google Scholar
Williams, I. S. 1998. U–Th–Pb geochronology by ion microprobe. Reviews in Economic Geology 7, 135.Google Scholar
Wu, F. Y., Lin, J. Q., Wilde, S. A., Zhang, X. O. & Yang, J. H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters 233, 103–19.Google Scholar
Wu, Y. B. & Zheng, Y. F. 2004. Genesis of zircon and its constraints on interpretation of U–Pb age. Chinese Science Bulletin 49, 1554–69.Google Scholar
Wu, Y. B., Zheng, Y. F., Tang, J., Gong, B., Zhao, Z. F. & Liu, X. M. 2007. Zircon U–Pb dating of water–rock interaction during Neoproterozoic rift magmatism in South China. Chemical Geology 246, 6586.Google Scholar
Wu, Y. B., Zheng, Y. F., Zhao, Z. F., Gong, B., Liu, X. M. & Wu, F. Y. 2006. U–Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica et Cosmochimica Acta 70, 3743–61.Google Scholar
Xiao, L., Zhang, H. F., Ni, P. Z., Xiang, H. & Liu, X. M. 2007. LA-ICP-MS U–Pb zircon geochronology of early Neoproterozoic mafic-intermediate intrusions from NW margin of the Yangtze Block, South China: implication for tectonic evolution. Precambrian Research 154, 221–35.Google Scholar
Xie, Z., Chen, J. F. & Cui, Y. R. 2010. Episodic growth of zircon in UHP orthogneisses from the North Dabie Terrane of east-central China: implications for crustal architecture of a collisional orogen. Journal of Metamorphic Geology 28, 979–95.Google Scholar
Xu, H. J., Ma, C. Q. & Ye, K. 2007. Early Cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U–Pb dating and geochemistry. Chemical Geology 240, 238–59.Google Scholar
Xu, H. J., Ma, C. Q. & Zhang, J. F. 2012. Generation of Early Cretaceous high-Mg adakitic host and enclaves by magma mixing, Dabie orogen, Eastern China. Lithos 142–143, 182200.Google Scholar
Xu, H. J., Ma, C. Q., Zhang, J. F. & Ye, K. 2013. Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China: petrogenesis and implications for destruction of the over-thickened lower continental crust. Gondwana Research 23, 190207.Google Scholar
Xu, S. T., Okay, A. I., Ji, S. Y., Sengör, A. M. C., Su, W., Liu, Y. C. & Jiang, L. L. 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science 256, 80–2.Google Scholar
Xu, H. J., Ye, K. & Ma, C. Q. 2008. Early Cretaceous granitoids in the North Dabie and their tectonic implications: Sr–Nd and zircon Hf isotopic evidences. Acta Petrology Sinica 24, 87103.Google Scholar
Ye, K., Cong, B. L. & Ye, D. 2000. The possible subduction of continental material to depths greater than 200 km. Nature 407, 734–6.Google Scholar
Yuan, H. L., Gao, S., Liu, X. M., Li, H. M., Gunther, D. & Wu, F. Y. 2004. Accurate U–Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards Newsletter 28, 353–70.Google Scholar
Zhai, M. G., Cong, B. L., Zhang, Q. & Wang, Q. C. 1994. The northern Dabieshan terrain: a possible Andean-type arc. Geology Review 36, 867–83.Google Scholar
Zhai, M. G., Windley, B. F., Kusky, T. M. & Meng, Q. R. (eds) 2007. Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia. Geological Society of London, Special Publication no. 280.Google Scholar
Zhang, H. F., Gao, S., Zhong, Z. Q., Zhang, B. R., Zhang, L. & Hu, S. 2002. Geochemical and Sr–Nd–Pb isotopic compositions of Cretaceous granitoids: constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology 186, 281–99.CrossRefGoogle Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006. Zircon U–Pb age and Hf–O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research 151, 265–88.Google Scholar
Zhao, Z. F., Chen, B., Zheng, Y. F., Chen, R. X. & Wu, Y. B. 2007 a. Mineral oxygen isotope and hydroxyl content changes in ultrahigh-pressure eclogite-gneiss contacts from Chinese Continental Scientific Drilling Project cores. Journal of Metamorphic Geology 25, 165–86.Google Scholar
Zhao, Z. F., Zheng, Y. F., Gao, T. S., Wu, Y. B., Chen, B., Chen, F. K. & Wu, F. Y. 2006. Isotopic constraints on age and duration of fluid-assisted high-pressure eclogite-facies recrystallization during exhumation of deeply subducted continental crust in the Sulu orogen. Journal of Metamorphic Geology 24, 687702.Google Scholar
Zhao, Z. F., Zheng, Y. F., Wei, C. S., Chen, F. K., Liu, X. M. & Wu, F. 2008. Zircon U–Pb, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chemical Geology 253, 222–42.Google Scholar
Zhao, Z. F., Zheng, Y. F., Wei, C. S. & Wu, Y. B. 2004. Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China. Geophysical Research Letters 31, L22602, doi: 10.1029/2004GL021061.Google Scholar
Zhao, Z. F., Zheng, Y. F., Wei, C. S. & Wu, Y. B. 2007 b. Post-collisional granitoids from the Dabie orogen in China: zircon U–Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos 93, 248–72.CrossRefGoogle Scholar
Zhao, Z. F., Zheng, Y. F., Wei, C. S. & Wu, F. Y. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen: implications for crust–mantle interaction and crustal architecture. Lithos 126, 99114.Google Scholar
Zhao, Z. F., Zheng, Y. F., Wei, C. S., Wu, Y. B., Chen, F. K. & Jahn, B. M. 2005. Zircon U–Pb age, element and C–O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos 83, 128.Google Scholar
Zheng, Y. F., Chen, R. X. & Zhao, Z. F. 2009. Chemical geodynamics of continental subduction-zone metamorphism: insight from studies of the Chinese Scientific Drilling (CCSD) core samples. Tectonophysics 475, 327–58.Google Scholar
Zheng, Y. F., Fu, B., Gong, B. & Li, L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie–Sulu orogen in China: implications for geodynamics and fluid regime. Earth Science Reviews 62, 105–61.Google Scholar
Zheng, Y. F., Wang, Z. R., Li, S. G. & Zhao, Z. F. 2002. Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm–Nd chronometer. Geochimica et Cosmochimica Acta 66, 625–34.CrossRefGoogle Scholar
Zheng, Y. F., Wu, Y. B., Chen, F. K., Gong, B., Li, L. & Zhao, Z. F. 2004. Zircon U–Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta 68, 4145–65.CrossRefGoogle Scholar
Zheng, Y. F., Wu, Y. B., Gong, B., Chen, R. X., Tang, J. & Zhao, Z. F. 2007 a. Tectonic driving of Neoproterozoic glaciations: evidence from extreme oxygen isotope signature of meteoric water in granite. Earth and Planetary Science Letters 256, 196210.Google Scholar
Zheng, Y. F., Wu, R. X., Wu, Y. B., Zhang, S. B., Yuan, H. L. & Wu, F. Y. 2008. Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research 163, 351–83.Google Scholar
Zheng, Y. F., Zhang, S. B., Zhao, Z. F., Wu, Y. B., Li, X. H., Li, Z. X. & Wu, F. Y. 2007 b. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos 96, 127–50.Google Scholar
Zheng, Y. F., Zhao, Z. F., Wu, Y. B., Zhang, S. B., Liu, X. M., & Wu, F. Y. 2006. Zircon U–Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chemical Geology 231, 135–58.CrossRefGoogle Scholar
Zheng, Y. F., Zhou, J. B., Wu, Y. B. & Xie, Z. 2005. Low-grade metamorphic rocks in the Dabie–Sulu orogenic belt: a passive-margin accretionary wedge deformed during continent subduction. International Geology Review 47, 851–71.Google Scholar
Zhu, G., Niu, M. L., Xie, C. L. & Wang, Y. S. 2010. Sinistral to normal faulting along the Tan–Lu fault zone: evidence for geodynamic switching of the east China continental margin. Journal of Geology 118, 277–93.Google Scholar
Zhu, G., Wang, Y. S., Liu, G. S., Niu, M. L., Xie, C. L. & Li, C. C. 2005. 40Ar/39Ar dating of strike-slip motion on the Tan–Lu fault zone, East China. Journal of Structural Geology 27, 1379–98.CrossRefGoogle Scholar