Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T20:29:21.041Z Has data issue: false hasContentIssue false

U–Pb zircon geochronology of volcanic deposits from the Permian basin of the Orobic Alps (Southern Alps, Lombardy): chronostratigraphic and geological implications

Published online by Cambridge University Press:  15 September 2014

FABRIZIO BERRA*
Affiliation:
Università degli Studi di Milano, Dipartimento di Scienze della Terra A. Desio, Via Mangiagalli 34, 20133 Milan, Italy
MASSIMO TIEPOLO
Affiliation:
C.N.R. – Istituto di Geoscienze e Georisorse, U.O.S. di Pavia, Via Ferrata 1, 27100 Pavia, Italy
VALERIA CAIRONI
Affiliation:
Università degli Studi di Milano, Dipartimento di Scienze della Terra A. Desio, Via Mangiagalli 34, 20133 Milan, Italy
GIAN BARTOLOMEO SILETTO
Affiliation:
Regione Piemonte
*
Author for correspondence: [email protected]

Abstract

U–Pb zircon ages from volcanic rocks of Early Permian age (Southern Alps, Lombardy), associated with fault-controlled transtensional continental basins, were determined with the laser ablation (LA)-ICP-MS technique. Four samples were collected at the base and at the top of the up to 1000 m thick volcaniclastic unit of the Cabianca Volcanite. This unit pre-dates the development of a sedimentary succession that still contains, at different stratigraphic levels, volcanic intercalations. Age results from a tuff in the basal part of the unit constrain the onset of the volcanic activity to 280 ± 2.5 Ma. Ignimbritic samples from the upper part of the unit show a large scatter in the age distribution. This is interpreted as the occurrence of antecrystic and autocrystic zircons. The youngest autocrystic zircons (c. 270 Ma) are thus interpreted as better constraining the eruption age, constraining the duration of the volcanic activity in the Orobic Basin to about 10 Ma. The new geochronological results compared with those of other Early Permian basins of the Southern Alps reveal important differences that may reflect (1) a real time-transgressive beginning and end of the volcanic activity or (2) the complex mixing of antecrystic and autocrystic zircon populations in the analysed samples.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthaud, F. & Matte, P. 1977. Late Paleozoic strike-slip faulting in southern Europe and northern Africa: result of a right-lateral shear zone between the Appalachians and the Urals. Geological Society of America Bulletin 88, 1305–20.2.0.CO;2>CrossRefGoogle Scholar
Bargossi, G. M., Kloetzli, U. S., Mair, V., Marocchi, M. & Morelli, C. 2004. The Lower Permian Athesian Volcanic Group (AVG) in the Adige Valley between Merano and Bolzano: a stratigraphic, petrographic and geochronological outline. In 32nd International Geological Congress, Florence, Scientific Sessions, Abstracts vol. 1, pp. 187.Google Scholar
Bargossi, G. M., Mair, V., Morelli, C. & Sapelza, A. 2000. The Athesian Volcanic District (Bolzano-Trento area): a general outline. In Stratigraphy and Facies of the Permian Deposits between Eastern Lombardy and the Western Dolomites. Field trip guidebook. Continental Permian (eds Cassinis, G., Cortesogno, L., Gaggero, L., Massari, F., Neri, C., Nicosia, U. & Pittau, P.), pp 21–4. International Congress Brescia, Italy, 15–25 September 1999. Pavia: Earth Science Department, Pavia University.Google Scholar
Bargossi, G. M., Rottura, A., Vernia, L., Visonà, D. & TRANNE, C. A. 1998. Guida all’escursione sul distretto vulcanico atesino e sulle plutoniti di Bressanone–Chiusa e Cima d’Asta. Memorie Società Geologica Italiana 53, 2341.Google Scholar
Berra, F. & Felletti, F. 2011. Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): stratigraphic significance. Sedimentary Geology 235, 249–63.Google Scholar
Cadel, G. 1986. Geology and uranium mineralization of the Collio Basin (Central Southern Alps, Italy). Uranium 2, 215540.Google Scholar
Cadel, G., Cosi, M., Pennacchioni, G. & Spalla, M. I. 1996. A new map of the Permo-Carboniferous cover and Variscan metamorphic basement in the Central Orobic Alps, Southern Alps, Italy: structural and stratigraphical data. Memorie Scienze Geologiche di Padova 48, 153.Google Scholar
Casati, P. & Gnaccolini, M. 1967. Geologia delle Alpi Orobie occidentali. Rivista Italiana Paleontologia e Stratigrafia 73, 25162.Google Scholar
Cassinis, G., Cortesogno, L., Gaggero, L., Massari, F., Neri, C., Nicosia, U. & Pittau, P. (eds). 2000. Stratigraphy and Facies of the Permian Deposits between Eastern Lombardy and the Western Dolomites. Field trip guidebook. Continental Permian, International Congress Brescia, Italy, 15–25 September 1999. Pavia: Earth Science Department, Pavia University, 157 pp.Google Scholar
Cassinis, G., Cortesogno, L., Gaggero, L., Perotti, C. & Ronchi, A. 2007. Volcanic products from the Early Permian Collio Basin (southern Alps) and their geodynamic implications. Periodico di Mineralogia 76, 2547.Google Scholar
Cassinis, G., Massari, F., Neri, C. & Venturini, C. 1988. The continental Permian in the Southern Alps (Italy). A review. Zeitschrift fur Geologische Wissenschaften 16, 1117–26.Google Scholar
Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. 2003. Atlas of zircon textures. In Zircon (eds Hanchar, J. M. & Hoskin, P. W. O.), pp. 469–500. Reviews in Mineralogy and Geochemistry vol. 53.Google Scholar
De Sitter, L. U. & De Sitter-Koomans, C. M. 1949. Geology of the Bergamasc Alps, Lombardy, Italy. Leidse Geologische Mededelingen 14, 1257.Google Scholar
Doglioni, C. 1995. Geological remarks on the relationships between extension and convergent geodynamic settings. Tectonophysics 252, 253–67.Google Scholar
Ewing, T. A., Hermann, J. & Rubatto, D. 2013. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contributions to Mineralogy and Petrology 165, 757–79.Google Scholar
Gretter, N., Ronchi, A., Langone, A. & Perotti, C. R. 2013. The transition between the two major Permian tectonostratigraphic cycles in the central Southern Alps: results from facies analysis and U/Pb geochronology. International Journal of Earth Sciences 102, 1181–202.CrossRefGoogle Scholar
Harlov, D. E. & Wirth, R. 2000. K-feldspar–quartz and K-feldspar–plagioclase phase boundary interactions in garnet–orthopyroxene gneisses from the Val Strona di Omegna, Ivrea–Verbano Zone, northern Italy. Contributions to Mineralogy and Petrology 140, 148–62.CrossRefGoogle Scholar
Horstwood, M. S. A., Foster, G. L., Parrish, R. R., Noble, S. R. & Nowell, G. M. 2003. Common-Pb corrected in situ U-Pb accessory mineral geochronology by LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry 18, 837–46.Google Scholar
Hunziker, J. C. & Zingg, A. 1980. Lower Paleozoic amphibolite to granulite facies metamorphism in the Ivrea-Zone (Southern Alps–Northern Italy). Schweizerische Mineralogische und Petrographische Mitteilungen 60, 181213.Google Scholar
Subcommission On Permian, Stratigraphy. International Permian Time Scale, 2013. Permophiles 57, 26.Google Scholar
Ketchum, J. W. F., Jackson, S. E., Culshaw, N. G. & Barr, S. M. 2001. Depositional and tectonic setting of the Paleoproterozoic Lower Aillik Group, Makkovik Province, Canada: evolution of a passive margin–foredeep sequence based on petrochemistry and U-Pb (TIMS and LAM-ICP-MS) geochronology. Precambrian Research 105, 331–56.CrossRefGoogle Scholar
Ludwig, K. R. 2000. Isoplot – A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 1a, 53 pp.Google Scholar
Malaveille, J., Guihot, P., Lardeaux, J. M. & Gardien, V. 1990. Collapse of thickened crust in the French Massif: Mont Pilat extensional shear zone and St. Etienne Late Carboniferous basin. Tectonophysics 177, 136–49.Google Scholar
Marocchi, M., Morelli, C., Mair, V., Klötzli, U. & Bargossi, G. M. 2008. Evolution of large silicic magma systems: new U–Pb Zircon data on the NW Permian Athesian Volcanic Group (Southern Alps, Italy). The Journal of Geology 116, 480–98.CrossRefGoogle Scholar
Miller, J. S., Matzel, J. P., Miller, C. F., Burgess, S. D. & Miller, R. B. 2007. Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research 167, 282–99.Google Scholar
Muttoni, G., Kent, D. V., Garzanti, E., Brack, P., Abrahamsen, N. & Gaetani, M. 2003. Early Permian Pangea ‘B’ to Late Permian Pangea ‘A’. Earth and Planetary Science Letters 215, 379–94.Google Scholar
Peressini, G., Quick, J. E., Sinigoi, S., Hofmann, A. W. & Fanning, M. 2007. Duration of a large mafic intrusion and heat transfer in the lower crust: a SHRIMP U–Pb zircon study in the Ivrea–Verbano Zone (Western Alps, Italy). Journal of Petrology 48, 1185–218.Google Scholar
Philippe, S., Villemaire, C., Lancelot, J. R., Girod, M. & Mercadier, H. 1987. Données minéralogiques et isotopiques sur deux gıtes hydrothermaux uranifères du bassin volcano-sédimentaire permien de Collio Orobico (Alpes Bergamasques): mise en évidence d’une phase de remobilisation crétacée. Bulletin de Minéralogie 110, 283303.Google Scholar
Quick, J. E., Sinigoi, S., Peressini, G., Demarchi, G., Wooden, J. L. & Sbisà, A. 2009. Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km. Geology 37, 603–6.Google Scholar
Schaltegger, U. & Brack, P. 2007. Crustal-scale magmatic system during intracontinental stike-slip tectonics: U, Pb and Hf isotopic constraints from Permian magmatic rocks of the Southern Alps. International Journal of Earth Sciences 96, 1131–51.CrossRefGoogle Scholar
Schaltegger, U., Fanning, C. M., Günther, D., Maurin, J. C.|, Schulmann, K. & Gebauer, D. 1999. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U–Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology 134, 186201.CrossRefGoogle Scholar
Siletto, G. B., Spalla, M. I., Tunesi, A., Lardeaux, J. M. & Colombo, A. 1993. Pre-Alpine structural and metamorphic histories in the Orobic Southern Alps, Italy. In Pre-Mesozoic Geology in the Alps (eds Von Raumer, J. F. & Neubauer, F.), pp. 585–98. Heidelberg: Springer-Verlag.Google Scholar
Sinigoi, S., Quick, J. E., Demarchi, G. & Kloezli, U. 2011. The role of crustal fertility in the generation of large silicic magmatic systems triggered by intrusion of mantle magma in the deep crust. Contribution to Mineralogy and Petrology 162, 691707.Google Scholar
Van Achterbergh, E., Ryan, C. G., Jackson, S. E. & Griffin, W. 2001. Data reduction software for LA-ICP-MS. In Laser Ablation-ICPMS in the Earth Sciences (ed. Sylvester, P.), pp. 239–43. Mineralogical Association of Canada, vol. 29.Google Scholar
Vavra, G., Schmid, R. & Gebauer, D. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology 134, 380404.CrossRefGoogle Scholar
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Quadt, A. V., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter 19, 124.Google Scholar
Winterer, E. L. & Bosellini, A. 1981. Subsidence and sedimentation on Jurassic passive continental margin, Southern. Alps, Italy. American Association of Petroleum Geologists Bulletin 65, 394421.Google Scholar
Supplementary material: File

Berra Supplementary Material

Supplementary Material

Download Berra Supplementary Material(File)
File 65.5 KB
Supplementary material: PDF

Berra Supplementary Material

Supplementary Material

Download Berra Supplementary Material(PDF)
PDF 71.2 KB
Supplementary material: PDF

Berra Supplementary Material

Supplementary Material

Download Berra Supplementary Material(PDF)
PDF 100.8 KB
Supplementary material: PDF

Berra Supplementary Material

Supplementary Material

Download Berra Supplementary Material(PDF)
PDF 79.2 KB
Supplementary material: PDF

Berra Supplementary Material

Supplementary Material

Download Berra Supplementary Material(PDF)
PDF 81.4 KB